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ABSTRACT 

Steel fabricators and connection designers in the building construction industry often rely on 

traditional connection design methods, which involve using connection design software or 

spreadsheets to simulate and design connections with the goal of minimizing costs associated with 

fabrication and erection. However, accurately assessing the efficiency and cost implications of 

these designs can be a significant challenge. This is due to the complexity of the process, which 

involves considering a wide range of parameters such as material tonnage, machinery availability, 

connection type, labour cost, fabrication and erection constraints, and available optimization tools. 

The connection design process can be time-consuming, especially when changes occur throughout 

the lifecycle of a project. These changes are common in the construction industry, and they can 

result in designers having to redo or recalculate a significant number of their designs, leading to a 

loss of efficiency and productivity. 

To address this challenge, this research aims to develop an optimization tool that streamlines the 

connection design workflow and allows designers to leverage emerging technologies such as 

parametric and generative design to generate multiple options in the early stages of design. This 

will enable designers to receive instant feedback on how changes affect cost and constructability, 

allowing for more efficient and effective connection design. Additionally, this tool will promote 

better integration of the workflow across different disciplines, further increasing efficiency and 

productivity for steel fabricators and connection designers. 
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1 INTRODUCTION  

1.1 Statement of Research Problem  
The design of steel buildings typically involves a multi-disciplinary team, with structural engineers 

being responsible for all structural aspects of the design. However, steel fabricators and connection 

designers are typically brought in only after the principal structural systems have been designed, 

limiting their influence on member selection and steel framing. As a result, inefficiencies can arise, 

such as the need for additional reinforcement, which can lead to increased costs for the client. 

Connection designers, therefore, focus on designs that can minimize costs associated with 

fabrication and erection, but accurately assessing the efficiency and cost implications of these 

designs can be a significant challenge. 

One major difficulty is the laborious and intricate process involved in designing connections for 

buildings. The connection designer utilizes finished drawings to design connections at every joint, 

generally followed by sketching connection details that the detailer interprets and manually enters 

into a 3D model. Although designing certain connections, such as shear connections, may be 

relatively straightforward, the entire process needs to be repeated for every connection on a 

building project, which can mean thousands of connections. While many steel fabricators have 

implemented their own methods to streamline the process, determining if the final design of the 

building represents the most cost-effective solution remains challenging and time-consuming. 

These challenges are particularly pertinent to the steel construction industry, which plays a critical 

role in contributing to the economies of countries like Canada and the United States. For example, 

in Canada, the steel industry employed about 35,000 workers and added $11 billion to the GDP in 

2007 (Canadian Industry Program for Energy Conservation et al., 2007). In the United States, 

structural steel accounted for 46% to 58% of the construction material market share between 2009 

and 2017 (AISC, 2018) and contributed to approximately 8% of the construction market (Grand 

View Research, 2018). On a global scale, the construction industry is a major driver of economic 

growth, valued at $10 trillion in 2015 and projected to reach $14 trillion by 2025. However, despite 

its potential for growth, the industry has been plagued by long-standing productivity issues 

(McKinsey Global Institute, 2017). These issues stem from various sources, including the unique 

and highly variable nature of construction projects, the reliance on paper-based drawings and 
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documentation, and the fragmentation of work and activities involving different disciplines and 

stakeholders. The involvement of multi-disciplinary teams can sometimes lead to clashes among 

their respective methodologies, causing delays and conflicts in the project's execution. Moreover, 

errors and omissions in paper-based design documents, coupled with communication gaps among 

stakeholders, can exacerbate these conflicts and lead to further schedule conflicts, project delays, 

and unanticipated field costs (Rahman, 2014; Ruby, 2008). 

The McKinsey Global Institute recommends that to overcome industry challenges, such as 

productivity constraints, key aspects of the architectural, engineering, and construction (AEC) 

industry, including design, engineering, and technology, should be improved. According to 

McKinsey, a potential 25% increase in productivity resulting from such improvements could 

significantly boost the industry's growth and the global economy as a whole (McKinsey Global 

Institute, 2017). Responding to cost pressures, efficiency concerns, and the need to meet 

sustainability targets, the construction industry is increasingly adopting new technologies in design 

and construction (Loosemore, 2014). Construction technologies encompass a wide range of tools, 

machines, and modifications that can address specific goals, functions, or problems. By leveraging 

these technologies, the industry can improve performance and productivity in the AEC sector, 

responding effectively to present and future demands (Duncan et al., 2018; Sepasgozar and Davis, 

2018).  

This research aims to develop a robust optimization tool capable of designing and detailing steel 

shear connections. The tool should be able to consider the preferences of steel fabricators, be 

flexible enough to allow for changes, and produce a multi-set of potential options for connection 

designers to choose from or work off of. The tool should also be able to output design results and 

have a level of automation that reduces the workload on the designer. Ultimately, this research 

seeks to improve the efficiency and cost-effectiveness of connection design, benefiting not just the 

steel construction industry but the broader construction industry as well. 

1.2 Objectives and Scope 
The objective of this research is to explore the potential of utilizing emerging technologies, 

including parametric design, generative design, and metaheuristics, to develop an optimization 

tool for steel connection design. The tool aims to enhance automation and decision-making in the 
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connection design process, resulting in an end product that exceeds the capabilities of traditional 

methods under time and budget constraints. 

It is crucial to understand that this research operates under the assumption that the principal 

structural elements of the building framework have already been designed by the structural 

engineer. While the ideal optimization of a steel building design would include the simultaneous 

optimization of steel framing geometry, member sizes, and connections to minimize overall cost 

and produce a more efficient design, the scope of this research is limited to optimizing connections 

only after the building framework design has been finalized. 

In order to achieve the objectives, the research involves the following steps: 

1. A literature review on the current state of the art in optimization techniques for steel 

connection design and broader structural engineering. 

2. The development of an optimization tool that incorporate metaheuristics as well as 

parametric and generative design techniques.  

3. The validation of the tool through case studies with previously designed building projects 

in collaboration with steel fabricators.  

4. The analysis of the results to determine the effectiveness of the tool in achieving the 

objectives. 

The research is conducted in collaboration with steel fabricators to ensure that the tool can be 

tailored to their specific needs and preferences, as well as to provide assurance of its effectiveness 

when applied to real projects. The goal of this research is to provide steel fabricators with a tool 

that streamlines the connection design process, reduces the workload on designers, and results in 

more efficient and cost-effective designs. 

1.3 Organization of Report  
This report is structured into six chapters. Chapter 2 is a comprehensive literature review on cost 

estimation, metaheuristics, and computational design approaches within the field of structural 

engineering and steel fabrication. In Chapter 3, the optimization tool and its framework are 

presented, highlighting the key components involved. Chapter 4 delves into the design and 

optimization of the connections, along with an in-depth examination of the overarching 

optimization procedure employed in the tool. In Chapter 5, the case studies conducted with the 



4 

optimization tool are explored, and the corresponding results are discussed. Finally, Chapter 6 

summarizes the conclusions drawn from this research project and recommendations for future 

studies.   
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2 LITERATURE REVIEW  

2.1 Introduction 
This chapter offers an overview of the existing technological challenges in the steel construction 

industry and current cost estimating techniques. Furthermore, this chapter provides an examination 

of the optimization and generative design techniques that are commonly used in both the AEC 

industry and steel connection design. 

2.2 Cost Estimation and Optimization 
The steel construction industry faces persistent challenges that are extensively documented in 

literature. These include potential cost overruns and delays, limited interaction with suppliers 

despite high dependence, a strong focus on repetitive processes, frequent design changes during 

construction, and a high degree of diversity among disciplines, leading to fragmentation, among 

other issues. (Dubois and Gadde, 2002; Håkansson and Ingemansson, 2013; Kannimuthu et al., 

2018; Muñoz-La Rivera et al., 2021; Shen and Lin, 2014; Yap et al., 2019; Yeganeh et al., 2019; 

Zidane and Andersen, 2018) In recent years, the literature has seen the emergence of 

methodologies and technologies that can manage vast amounts of information to optimize design 

and construction processes. These new methods aim to reduce economic losses, minimize design 

time, avoid conflicts during construction, and enable model simulations. Muñoz-La Rivera et al. 

(2021) suggest that these emerging tools, such as artificial intelligence, building information 

modelling, and cloud computing, offer a departure from traditional ways of working. 

According to Evers and Maatje (2000), the cost of a structure can be categorized as shown in 

Figure 2-1. They note that pre-design, detailed design, detailing, materials, fabrication, coating, 

and erection all have costs that are associated to the connections. They emphasize 50% of the total 

costs in a steel structure can be related to its connections and underscore the significance of 

conducting a thorough evaluation of connections throughout the stages of design to achieve cost 

savings.  
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Figure 2-1: Cost breakdown of an average steel structure (Evers and Maatje, 2000) 

Evers and Maatje’s study focuses on ICCS-TVC, a software package designed to estimate steel 

structure costs based on the infrastructure and production capabilities of a specific steel fabricator. 

This software package comprises four distinct modules: 

1. A simple "manual" tool that allows for quick cost estimations based on user inputs such 

as material, labour hours, and productivity. 

2. A 3D graphical interface that provides a visual representation of the steel structure and 

its connections. 

3. A connection generator module that contains nine types of connections, enabling 

estimation of the required plates, bolts, and welds for specific joints. This module does 

not design connections, but rather determines a rough estimate of the total number of 

parts required for construction of the steel structure, considering various factors such 

as drilling, shearing, cutting, and other related tasks, which can later be used for cost 

estimation.  

4. A production cost engine that determines labour costs associated with the structure 

based on labour and material costs provided by the user, as shown in Figure 2-2. 
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Figure 2-2: User interface for inputting production and labour costs of a steel fabricator (Evers and Maatje, 2000) 

To evaluate the potential of an integrated design of a portal frame, a case study was carried out 

utilizing 3D modelling and analysis programs in conjunction with the estimating software, 

ICCS-TVC. This study demonstrated the advantages of employing modern technology to enhance 

the competitiveness of steel fabricators (Evers and Maatje, 2000). 

Structural optimization primarily aims to minimize costs, which is typically achieved by 

optimizing an objective function, such as reducing the weight of the structure. Nonetheless, this 

objective function usually overlooks the expenses incurred during the fabrication and erection of 

the structure. Pavlovčič et al. (2004) present an objective function that considers the 

self-manufacturing costs of the entire structure. This is achieved by utilizing a cost function that 

encompasses all critical fabrication and erection activities that can be defined by the user and easily 

adapted to different production lines. The cost function takes into account various aspects of the 

structure's overall cost that are typically overlooked in structural optimization. These include 

welding costs for the elements, expenses incurred during welding manufacturing and material 

procurement, assembly and tack welding costs, expenses for painting the elements, surface 

preparation, hole formation, as well as transportation and erection costs, among others (Pavlovčič 

et al., 2004). To evaluate the effectiveness of their cost function optimization approach, the authors 
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performed a case study on a two-storey, two-bay frame subjected to both gravity and lateral loads. 

The assessment involved comparing their approach to a classical design method, which aims to 

use the lightest cross-sections, and a simple volume optimization technique, where the goal is to 

minimize the amount of steel used. The case study showcases the efficacy of using the cost 

function approach to minimize cost as shown in Figure 2-3. A similar case study was conducted 

on a four-storey, five-bay frame which produced similar results. 

 

Figure 2-3: Comparison of cost contributions as a result of three different calculations of two-storey, two-bay frame 
(Pavlovčič et al., 2004) 

It is important to note that design decisions made during the early stages of the design process have 

a far greater impact on cost compared to later decisions (Barg et al., 2018; Ruby, 2008). To address 

this issue, Barg et al. (2018) propose an integrated steel design method that streamlines the process. 

The method involves uploading a structural model consisting of a frame layout with preliminary 

member sizes and preferred connection types, and then automatically detailing the frame 

connections to produce a bill of quantities suitable for fabrication. Unit rates maintained by 

suppliers are then used to estimate the total installed cost. Finally, cost feedback is provided in 

near real-time, allowing engineers to make informed design decisions that minimize cost without 

compromising the design (Barg et al., 2018). The flowchart of the optimization process is 

presented in Figure 2-4. 
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Figure 2-4: Proposed analytical method to estimate total installed cost of steel frames during early design (Barg et 
al., 2018) 

This method was demonstrated on two example frames: a one-storey, one-bay frame and a 

five-storey, five-bay frame. The near real-time cost feedback provided valuable insights for 

decision making and resulted in the identification of lower-cost alternatives. These alternatives 

were achieved through adjustments to the steel section sizes and connection types of the frames 

during the optimization process (Barg et al., 2018). 

During the later stages of design, an activity-based cost estimation approach can be employed to 

comprehensively examine a product design and its associated supply chain processes. This can 

lead to more precise cost estimation and better overall cost analysis (Aram et al., 2014). H'mida et 

al. (2006) conducted a study in which the manufacturing cost of a product was estimated through 

the modelling of resources required for each operation. These individual costs were then 

aggregated to determine the overall cost of the product's manufacturing process. To achieve this, 

a product model was developed by identifying the various available operations and alternative 

machine uses for each feature (H’mida et al., 2006). A similar process was used to develop the 

cost function for the fabrication and erection of a steel frame and its joints by Barg (Barg, 2020). 

In order to carry out a detailed and precise cost analysis, it is necessary to gather data related to 

the product, process, projects, functions, and cost drivers from various sources. As discussed in 

the literature, this data can help to identify the cost driving parameters and their impact on the total 

cost of each activity. It is crucial to assess the quality of the collected data to ensure its 

measurability, reliability, and completeness, as this is a key factor in establishing accurate cost 

functions (Aram et al., 2014; Cavalieri et al., 2004). 
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2.3 Metaheuristics in Structural Engineering  
Structural optimization is a discipline within structural engineering that approaches structural 

design as a decision-making problem. The aim is to select the optimal course of action from 

multiple alternatives. To achieve this, decision-making problems are modeled to minimize or 

maximize an objective function, which measures the quality of the solution under certain 

limitations. Decision variables, such as the steel profile or thickness of a concrete slab, are adjusted 

to obtain the optimal solution while ensuring that constraints, such as limitations on resources or 

other factors, are met. The ultimate goal is to identify the best possible values of decision variables 

that lead to the optimal solution, where the objective function attains its extremum value and all 

constraints are satisfied (Saka et al., 2016; Singh and Choudhary, 2021). 

To understand why traditional mathematical optimization is not appropriate for structural design 

applications, it is essential to consider some key limitations. First, these techniques assume 

continuous design variables, which is problematic as design variables in structural design are 

typically discrete. For example, cross-sectional dimensions of an angle connection could 

theoretically be any real number within an upper and lower bound, but in practice, the section is 

chosen from a list of available steel profiles with discrete dimensions. Second, most mathematical 

optimization techniques require gradient computations of the objective function and constraints, 

which can be challenging as constraint functions are often not continuous, and gradients may not 

exist. Additionally, these functions may be mathematically complex, making them difficult to 

model accurately in an optimization problem. Finally, these techniques require an initial estimate 

to start the iterations, and the performance of the algorithm is heavily influenced by this initial 

guess, often leading to local optima instead of the global optimum. (Mei and Wang, 2021; Saka et 

al., 2016; Saka and Geem, 2013; Singh and Choudhary, 2021). 

According to Saka et al. (2016), metaheuristics is an “iterative generation process which makes 

use of certain guides in the search process of the design domain” (Saka et al., 2016). This method 

is more appropriate for structural design problems, as it overcomes many of the challenges 

associated with traditional mathematical optimization techniques. Unlike deterministic methods 

that always converge to the same solution with the same initial guess, metaheuristics introduces 

randomness in its search process, potentially resulting in a different outcome each time it is 

executed. As a result, metaheuristics is considered a stochastic optimization approach. 
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Metaheuristic algorithms do not rely on gradient information or the convexity of objective 

functions and constraints. Instead, they employ probabilistic transition rules rather than 

deterministic rules, and they do not necessitate an explicit relationship between the objective 

function and constraints. These algorithms are based on stochastic search strategies, making them 

highly effective and versatile in handling the combinatorial explosion of possibilities. 

Metaheuristic algorithms emulate strategies observed in nature, drawing inspiration from biology 

and laws of physics, in order to direct the search process aiming to efficiently explore the search 

space using these mechanisms to find near-optimal or global optimum solutions (Khanduja and 

Bhushan, 2021; Luke, 2013; Singh and Choudhary, 2021; Voß, 2001; Yang, 2010; Yang, 2010).  

In the field of structural engineering, problems often involve non-linear, non-differentiable, or 

noisy objectives, which make it beneficial to use metaheuristics. While metaheuristics cannot 

guarantee optimal solutions, they typically produce solutions that are close to optimal with 

minimal computational effort. However, the ultimate goal of structural engineering design is to 

develop a design that is cost-effective, while complying with design code provisions (Zavala et 

al., 2014). This results in optimization problems that have more than one objective, which are 

known as multi-objective optimization problems (MOOPs). In contrast to single-objective 

optimization problems, different solutions in MOOPs will produce different trade-offs, meaning 

that a solution that improves one objective may worsen another. As a result, the Pareto front, also 

known as the Pareto-Optimal front, is a set of optimal solutions rather than a singular optimal 

solution. The Pareto front shows the balance between various objectives and provides 

decision-makers with a range of optimal alternatives, each with its own advantages. The size and 

shape of the Pareto front depend on the problem and the number of objectives and can range from 

a single point to a curve, surface, or high-dimensional shape. Using multi-objective optimization 

techniques can generate a range of optimal solutions, enabling designers to select the one that best 

aligns with their specific needs and requirements (Deb, 2001; Deb et al., 2002; Duong et al., 2022; 

Miettinen, 1998; Sanchis et al., 2008). 

As a form of metaheuristics, evolutionary optimization (EO), also known as genetic algorithms 

(GA), have become increasingly popular (Salehi and Burgueño, 2018). EOs attempt to mimic the 

bio-mechanisms of mutation, recombination, and natural selection, all of which form the basis of 

evolution (Tian et al., 2017). These algorithms employ a population-based approach, which 
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involves multiple solutions in each iteration, leading to the creation of a new population of 

solutions in every cycle. Unlike classical optimization algorithms that update one solution per 

iteration, EO procedures utilize a population-based approach that enables them to identify multiple 

optimal solutions, facilitating multi-objective optimization (Deb, 1999, 2011). One of the strengths 

of EO algorithms is their flexibility, which allows users to choose appropriate operators and 

problem-specific information to address specific optimization problems. However, this flexibility 

also places a responsibility on the user to select tangible operators that can produce an efficient 

and consistent search. Nevertheless, the advantages of employing a flexible optimization 

procedure over rigid and specific algorithms are particularly relevant in tackling complex 

real-world optimization challenges, including non-differentiable objectives and constraints, 

non-linearities, multiple optima, large problem sizes, uncertainties in decision variables, and mixed 

variable types, all of which are prevalent in the structural engineering optimization (Deb, 2011; 

Goldberg, 1989).  

Evolutionary multi-objective optimization can be classified into three categories based on when 

decision-maker (DM) preferences are incorporated: a priori, interactive, and a posteriori 

approach. In the a priori approach to decision making, the DM preferences are integrated into the 

optimization process prior to conducting the search. Several techniques, such as weighted sum, 

utopia point, goal attainment, or physical programming, are commonly used for this purpose 

(Sanchis et al., 2008). While an a priori method can be effective and efficient when the DM 

preferences can be accurately captured in a mathematical model, this is often not the case. The 

interactive approach to decision making involves the gradual integration of DM preferences 

throughout the optimization process. This approach allows DMs to “learn” about the problem and 

refine their preferences as needed, guiding the search towards optimal solutions while avoiding 

non-ideal ones. However, a significant drawback of this method is that it often requires the DM to 

be actively engaged and involved in the search process (Purshouse et al., 2014). The a posteriori 

approach to decision making involves incorporating DM preferences after the search process is 

complete. This approach first involves approximating the Pareto front, followed by the 

presentation of a set of trade-off solutions from which the DM can choose their preferred solution. 

The a posteriori approach is often effective for MOOPs with 2 or 3 objectives, as a reliable 

approximation of the Pareto front can be obtained and presented to the DM. However, this method 

becomes less effective as the number of objectives increases in MOOPs (Purshouse et al., 2014). 
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The a posteriori approach has been widely used in literature to optimize various structural design 

problems (Alkhadashi et al., 2022; Barraza et al., 2017; Duong et al., 2022; García-Segura and 

Yepes, 2016; Gonçalves et al., 2015; Hasançebi et al., 2009; Kripakaran et al., 2011; Neves et al., 

2022; Stanković et al., 2012; Winslow et al., 2010). Some specific examples are discussed below. 

Kripakaran et al. (2011) presented a computational approach that can enhance the decision-making 

process for designing moment-resisting steel frames. By utilizing genetic algorithms, the authors 

conducted a comprehensive trade-off study of a five-bay, five-storey frame that accounts for the 

cost of connections, in addition to the cost of the steel frame, in their optimization model. This 

cost function considers whether the connections are rigid or hinged, introducing additional 

variables beyond the typical optimization problem that focuses only on columns and beams as 

decision variables. To begin the optimization process, the minimum weight solution is first 

identified, where all connections in the frame are rigid. To do so, an optimization procedure is 

employed to determine the section sizes that meet both strength and serviceability requirements, 

while minimizing weight as outlined in Figure 2-5 and Figure 2-6, respectively.  

 

Figure 2-5: Algorithm for correcting solutions that violate strength requirements (Kripakaran et al., 2011) 
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Figure 2-6: Algorithm for correcting solutions that violate sway constraints (Kripakaran et al., 2011) 

To create a trade-off curve, depicted in Figure 2-7, that effectively balances the number of required 

rigid connections, rreq, with the total cost, a genetic algorithm (GA) is employed. The GA is utilized 

to identify the optimal location of rigid connections, given a specified rreq. Multiple runs of the GA 

are conducted at varying rreq values, while section sizes are optimized based on the algorithms 

presented in Figures 2-5 and 2-6. It is important to note that each solution must meet certain 

strength and sway constraints; failure to do so results in the application of a penalty cost that 

significantly reduces the fitness of the individual solution. 
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Figure 2-7: Trade-off between weight of frame and number of rigid connections (Kripakaran et al., 2011) 

The case study identifies that there exists an optimal number of rigid connections that minimizes 

the total cost. Moreover, the approach showcases the ability to provide a range of alternative 

options that can be further refined or selected, enhancing its overall practicality and utility 

(Kripakaran et al., 2011). 

Barraza et al. (2017) conducted a study demonstrating the efficacy of the Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II) and Particle Swarm Optimization (PSO) in designing moment-

resisting steel structures subjected to earthquake loading in both two and three dimensions. The 

NSGA-II is a widely-used GA that leverages the principles of evolution to guide its optimization 

process (Deb et al., 2002), while the PSO is a swarm optimization method inspired by the collective 

behaviour of birds flocking or fish schooling (Kennedy and Eberhart, 1995). A more detailed 

discussion on both these algorithms can be found in Section 3.5. The objective of the study was to 

achieve an optimal solution that minimizes structure weight and inter-storey drift, while also 

meeting strength requirements outlined by the Load and Resistance Factor Design (LRFD) 

specifications provided by the American Institute of Steel Construction (AISC, 2010). In the 2-D 

case study, a four-storey, two-bay frame with a load configuration as depicted in Figure 2-8 was 

utilized, and 256 W-shape sections from the AISC database were considered. Notably, for this 

frame only four distinct W-sections could coexist at any given time. Specifically, columns C1-C6 
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were required to have the same section, columns C7-C12 were required to have the same section, 

beams V1-V4 had to have the same section, and beams V5-V8 were also required to have the same 

section. Using the NSGA-II, an initial population of 100 steel frames was generated, with two 

objectives specified: minimize the structural weight, FO1, and minimize the maximum inter-storey 

drift, FO2.  

 

Figure 2-8: Geometric characteristics and lateral loads for structural 2D steel frame (Barraza et al., 2017) 

The results of the study demonstrated the effectiveness of NSGA-II in achieving moment-resisting 

steel frame building designs that minimize the objective functions of interest, namely weight and 

structural performance as measured by the maximum inter-storey drift. This is illustrated in Figure 

2-9 by the decrease in the objective functions as the number of generations increases.  

 

Figure 2-9: Average functions for 2D steel frame: (a) structural weight, FO1; (b) maximum inter-storey drift, FO2 
(Barraza et al., 2017) 
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The PSO algorithm also yielded comparable results for the 2-D steel frame. Furthermore, both the 

NSGA-II and PSO algorithms exhibited promising outcomes in minimizing the same objective 

functions in a 3-D case study. In conclusion, Barraza et al. (2017) assert that GAs and PSO are 

valuable tools in structural optimization. 

Duong et al. (2022) explored the use of GAs to optimize structural steel connections based on their 

demand-to-capacity ratios. To accomplish this, Rhino3D (McNeel and Associates, 2023b) was 

employed to create a parametric model of various steel shear connections, including shear tabs, 

end plates, bolt–bolted angles, and welded–bolted angles. Subsequently, NSGA-II was utilized to 

optimize these connections based on a design force and to maximize the demand-to-capacity ratio, 

while adhering to strength constraints according to CSA-S16 (CSA, 2019) and AISC-360 (AISC, 

2016) specifications. The authors conducted two solutions: a standards-based approach utilizing 

code equations and a finite element-based solution. Notably, in a shear end plate case study, the 

two different methods yielded similar results to those found in the Handbook of Steel Construction 

(CISC, 2021) showcasing its potential. The authors concluded that the use of GA in optimization 

of structural steel connections is effective; however, a finite element-based approach should be 

reserved for more complicated connections due to its computational cost (Duong et al., 2022).   

To minimize the cost, reduce CO2 emissions, and maximize the overall safety factor of a three-

span continuous post-tensioned box-girder road bridge, García-Segura and Yepes (2016) 

suggested utilizing a multi-objective harmony search. In addition to exploring decision variables 

and assessing objective functions, the optimization procedure integrated CSiBridge (Computers 

and Structures Inc., 2022) for finite element analysis and MATLAB (The MathWorks Inc., 2022) 

for limit states verification, as illustrated in Figure 2-10. The optimization procedure generates a 

set of optimal solutions that are analyzed to reveal the correlation between objectives, identify the 

variables that can improve safety, and highlight the critical ultimate limit states. The findings 

indicate that using metaheuristics to optimize cost is a viable approach to achieving designs with 

lower CO2 emissions, provided that the cost and CO2 emission criteria result in reduced material 

consumption (García-Segura and Yepes, 2016). 
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Figure 2-10: Flowchart for structural analysis and optimization (García-Segura and Yepes, 2016) 

2.4 Parametric and Generative Approaches within Computational Design 
Parametric design is a modelling approach where the relationships among various parameters of 

an object, such as shape, dimensions, and positioning, are predetermined. This approach allows 

the designer to easily modify some parameters, with the rest of the model being adjusted 

accordingly by the software based on predetermined rules. However, these permutations must be 

evaluated to ensure they meet the project's objectives (Jabi, 2013). Generative design has emerged 

as a new approach that allows designers and engineers to specify parameters such as materials, 

spatial constraints, manufacturing methods, and cost limitations to create algorithms or rule sets. 

This approach facilitates the exploration of various permutations of the model automatically, and 

the software generates the best design alternatives according to the objectives proposed by the 

user. In contrast to parametric design, where the user can easily modify the model's geometry for 

later evaluation, generative design involves the software taking inputs, evaluating them, and 

creating the best alternatives that meet the user's requirements. 

Generative design (GD) involves processes that use specific principles like genetic algorithms and 

topology optimization to optimize designs through a unique set of rules and algorithms. However, 

the open-ended nature of generative design often yields an overwhelming number of results, many 
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of which can be highly unpredictable unless appropriate constraints are applied to limit the range 

of possibilities. Thus, an effective generative computational framework must include both 

mechanisms to generate possibilities and constraints to ensure that results are relevant and useful. 

When properly developed, this intelligent system approach can inform early design decisions and 

lead to more efficient and effective designs (Johan et al., 2019). 

Oxman (2006) explains that the emergence of computational design (digital design) has introduced 

a new form of design that differs from traditional paper-based design. In this context, designers 

interact not only with the freeform of design but also with digital constructs such as design 

representations and elements. The level of control that designers have in computational design is 

dependent on their computational literacy, which has become a critical factor (Oxman, 2006). 

Furthermore, designers have taken on a new role as tool builders in computational design 

environments, with opportunities to develop tools that generate designs through scripting and 

editing computational mechanisms, in addition to generating designs themselves (Aish, 2003). 

Oxman (2006) emphasizes that generative design tools require an interactive module that allows 

designers to control and modify the GD mechanisms to achieve desired solutions. Custom design 

tools and compound models that integrate various digital design models are also essential, creating 

even greater opportunities for design (Oxman, 2006).  

Design is widely considered a co-evolutionary process, whereby the problem and solutions 

mutually guide each other as the designer engages with the design problem (Dorst, 2019; Dorst 

and Cross, 2001; Lawson, 2010; Schon, 1992). Typically, the designer begins with an ill-defined 

problem, and as the design activity progresses, the problem and solutions evolve in tandem. This 

dynamic interplay, described as "reflective practice" by Schon (1992), leads to a fluid and 

constantly evolving view of the problem and solution as the designer interacts with the task. Gero 

(1998) explains how designers' past experiences and immediate task environment influence 

emergent design solutions, which is particularly relevant in structural engineering and steel 

connection design.   

Singh and Gu (2012) reviewed the design exploration capabilities in architecture of five different 

GD techniques: shape grammars (SG) (Stiny, 1980), L-systems (LS) (Lindenmayer, 1968), cellular 

automata (CA) (Neumann, 1951; Wolfram, 2002), genetic algorithms (GA) (Holland, 1975; 

Sivanandam and Deepa, 2007), and swarm intelligence (SI) (Kennedy and Eberhart, 1995; J. Yang 
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et al., 2020). They indicate that some GD techniques are more suited for specific design purposes 

than others. GAs, in particular, are best suited for design optimization problems that are commonly 

found in structural engineering and connection design applications. Table 2-1 and Table 2-2 

showcase the design and system development aspects of the different GD techniques, respectively. 

Table 2-1: Design aspects of generative design techniques (Singh and Gu, 2012) 

 

Table 2-2: System development aspects of generative design techniques (Singh and Gu, 2012) 

 

According to Abdallah et al. (2019), the field of structural engineering has been slow to adopt 

generative design applications for optimizing structures, in part due to limitations imposed by 

traditional construction processes that restrict design flexibility and result in structures with 
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excessive material usage and negative environmental impacts. However, advancements in 

technology, such as 3D printers, have opened up possibilities for more complex geometries in 

construction and greater design flexibility. Abdallah et al. (2019) showcased the capabilities of 

generative design in reducing material usage for cantilevered concrete beams. Through the 

manipulation of variables such as beam depth (h), length (L), and step increment size (x) 

(illustrated in Figure 2-11), they achieved a reduction in both cost (ranging from 40% to 52%) and 

CO2 emissions (ranging from 39% to 51%) per beam in comparison to a traditionally designed 

cantilever concrete beam (Abdallah et al., 2019). 

 

Figure 2-11: Cantilever beam designs: (a) traditionally designed; (b) optimized (Abdallah et al., 2019) 

Hofmeyer and Delgado (2015) explored the use of a genetic algorithm-based method for 

optimizing building spatial and structural designs. The approach involved generating a population 

of accompanying building and spatial designs and evaluating them using the finite element 

method, with specific performance indicators such as total strain energy, spatial volume, and 

number of spaces. The findings indicate that collaborative design, through modification of one 

domain (spatial) to optimize another (structural), can be just as effective as monodisciplinary 

optimization. Additionally, the genetic algorithm-based method produced a multitude of design 

variations, which helps prevent overlooking design possibilities (Hofmeyer and Davila Delgado, 

2015). 

Martinez-Rocamora et al. (2020) introduce a novel approach for creating cost-efficient and 

customizable curved walls using parametric programming and 3D printing technology. They argue 

that conventional building design and construction methods can be costly, time-consuming, and 

often limit design possibilities. With parametric programming, which Lim et al. (2016) describe 

as a form of visual programming that enables nonspecialized users to program code in an intuitive 

way, Martinez-Rocamora et al. (2020) present a method for designing and fabricating curved walls 

based on a set of parameters that define the wall's shape and size. This approach offers designers 
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the flexibility to create a range of shapes, from simple curves to more complex designs with 

multiple curves. The authors demonstrate the practicality of their method through a case study of 

a building in Mexico City that features curved walls designed using parametric programming and 

printed using a 3D printer, resulting in faster and more cost-efficient construction than traditional 

methods (Martínez-Rocamora et al., 2020). 

Johan et al. (2019) explored using material-based constraints as a key driver in generative 

frameworks for designing planar space trusses made of steel, wood, and bamboo. To achieve this, 

they developed a generative framework using tools such as C# programming language (Microsoft, 

2023), Grasshopper (McNeel and Associates, 2023a), and Galapagos (Rutten, 2019), an 

evolutionary solver. This framework demonstrates the potential to produce fast iterations, while 

ensuring the demand does not exceed the capacity of the system, making it a useful starting point 

for further design development. To account for solutions that do not meet this criterion, a penalty 

function is implemented. This function enables Galapagos to disregard such solutions during the 

optimization process. Figure 2-12 demonstrates how the research project was able to generate a 

subset of optimal planar space trusses that can be subjected to further analysis and refinement by 

the engineer. The generative approach can also progressively improve the intelligence of the 

process by evaluating solutions and informing subsequent iterations, resulting in a dynamic 

relationship between scripting potential, parametric environments, and traditional analyses during 

the development stage (Johan et al., 2019). 

 

Figure 2-12: Various optimization results for planar space truss systems (Johan et al., 2019) 
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Rodrigues et al. (2015) proposed an approach to optimize the thermal performance of a group of 

buildings in an urban quarter. They used a generative design technique that combines an 

evolutionary strategy with a stochastic hill climbing method (Rodrigues et al., 2013a, 2013b) to 

generate alternative floor plans according to user preferences and design program requirements. 

The results of this study demonstrated the immense value of such approaches in urban and 

architectural design processes. Not only do they generate designs for further development, but they 

also provide opportunities to explore urban configurations that meet functional and performance 

objectives (Rodrigues et al., 2015). 

According to Touloupaki and Theodosiou (2017), GD has emerged as a prominent trend in 

architecture over the past few decades, proving to be an invaluable tool for effectively exploring 

potential design options. This method provides dynamic control over geometry and components 

when designing forms or systems, allowing designers to find appropriate solutions to complex 

problems by assessing multiple variants simultaneously. Visual/graphical coding tools for design, 

such as Dynamo Studio for Autodesk Revit (Autodesk, 2023) or Grasshopper for Rhinoceros 3D 

(McNeel and Associates, 2023a), enable the implementation of parametric design concepts using 

visual logic, thereby automating complex tasks. The integration of parametric design, energy 

simulation, form optimization, and genetic algorithms in net zero energy buildings demonstrates 

potential for improving the AEC industry. This potential is particularly pronounced when 

accompanied by the advancement of more user-friendly procedures and software (Touloupaki and 

Theodosiou, 2017). 
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3 COMPONENTS OF OPTIMIZATION TOOL  

3.1 Introduction 
This chapter explores the components of the optimization tool that facilitates a new approach to 

automate the design of steel connections in a steel building structure, taking into account material 

and labour costs, as well as fabricator preferences. The optimization tool is developed using 

Grasshopper3D (McNeel and Associates, 2023a), a visual scripting plugin for Rhino3D (McNeel 

and Associates, 2023b), Tekla Structures (Tekla, 2022), a widely used Building Information 

Modelling (BIM) software for structures, and C# programming (Microsoft, 2023), a programming 

language capable of accessing Tekla’s application programmable interface and generating custom 

components within Grasshopper. To begin the connection design process using the tool, the 

designer uploads an existing Tekla stick model that represents the structure without detailed 

connections. Next, the user inputs their preferences and unit rates directly into Grasshopper. 

Finally, the optimization procedure is initialized, and this procedure is aimed at designing and 

optimizing all connections in the structure with the goal of minimizing both cost and material 

weight. Given that this is a bi-objective optimization challenge, the procedure generates a set of 

solutions for the user's evaluation. The user can then select from or refine these solutions based on 

their individual preferences. It is important to acknowledge that, at present, the optimization tool 

is limited to designing shear connections. Nonetheless, the framework detailed in this chapter 

provides a solid foundation for future researchers to extend the tool's capabilities to encompass 

various other types of connections. 

This chapter also examines the cost function utilized to estimate the overall cost of the structure. 

Developed through a collaborative effort with an industry partner steel fabricator and drawing 

insights from a range of literature sources, notably the work of Barg et al. (2018). The cost function 

incorporates unit rates derived from the specific shop activities associated with the designated 

connection type. In conjunction with the user-provided labour rates, it provides an estimation of 

the overall cost of the structure. This estimation plays a crucial role in the second layer of 

optimization, facilitating the generation of optimal solutions for the user to consider.  

3.2 Tekla Structures 
Tekla Structures, a screenshot of which is shown in Figure 3-1, is a highly versatile structural 

Building Information Modelling (BIM) software that enables the modelling of structures using a 
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wide range of building materials, such as steel, concrete, and timber. The software is a popular 

choice among fabricators in North America for detailing and producing shop drawings for various 

building projects. This research project is based on the assumption that the structure has been 

designed by the structural engineer, making Tekla Structures an ideal choice for the optimization 

tool. As steel fabricators would typically create a stick model based on the structural and 

architectural drawings before proceeding with connection design, the software aligns with the 

existing workflow of many Canadian steel fabricators. Consequently, the optimization tool can be 

effectively incorporated into various building projects.  

 

Figure 3-1: Example of a model in Tekla Structures 2022 

Tekla Structures has a robust Application Programmable Interface (API). In short, an API enables 

the communication between two or more computer programs. It allows the optimization tool to 

extract information from a Tekla model to any other computer programs and vice versa. Given that 

the optimization tool automates the design of steel connections, it is critical to access the modelling 

software's functionality via programming. This ensures that the optimization process can import 

and export information from the model as needed, facilitating a streamlined and efficient 

workflow. As an example, suppose a user wishes to modify all cross-section sizes in their model 

to a particular profile. Instead of manually altering the cross-section sizes in the Tekla model, the 

user can create a script that automatically adjusts the cross-section sizes upon execution.  

The Tekla API provides the capability to extract beams and columns from a model as 3D vectors, 

which can be evaluated using linear algebra to determine the connection space at each joint. This 
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information is mandatory in designing and optimizing the connections. Furthermore, the API 

facilitates the determination of parameters such as elevation difference, slope angle, skew angle, 

and coping requirements between the support and supported members by analyzing these vectors. 

Additionally, Tekla's API allows for programmatic addition, modification, or deletion of 

connections directly in the model, which is a valuable feature for automation in the optimization 

tool. 

3.3 Grasshopper3D 
Grasshopper3D is a visual programming language that runs directly inside Rhino3D, a commercial 

3D computer graphics and computer-aided design software. Although Grasshopper is primarily 

used as a parametric modelling tool for architecture, it has seen a rise in popularity among the 

structural engineering industry to optimize simple to complex structural design problems. For the 

optimization tool, Grasshopper serves as a user interface due to its simplistic and intuitive visual 

programming features. Normally, Grasshopper is used to create parametric algorithms in Rhino. 

However, the Tekla development team has produced a package known as Grasshopper-Tekla Live 

Link, which enables real-time communication between the Tekla Structures application and 

Grasshopper. This feature enables users to utilize the visual programming capabilities of 

Grasshopper to access the functionality of Tekla Structures.  

Figure 3-2 displays schematically the Grasshopper script containing the optimization tool. Each 

"box" within the script, formally known as a component, corresponds to a function that performs 

a specific action given specific inputs. The component may generate one or more outputs that can 

subsequently serve as inputs for other components, allowing the user to create algorithms ranging 

from simple to complex. One major advantage of Grasshopper is the ability to create custom 

components through C# programming, which expands upon the default library of components. 

This means that the user can design components to perform virtually any desired function. 

Therefore, besides the components offered by the Grasshopper-Tekla Live Link, the optimization 

tool also leverages additional components developed using C# programming and Tekla’s API. 
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Figure 3-2: Optimization tool in Grasshopper 

A control window where the steel fabricator can specify their preferences along with their unit 

rates is shown in Figure 3-3. The window prompts the user to select various parameters such as 

the structural steel grade, steel grade of the connection elements, bolt grade, bolt size, coping 

preference, as well as the cost of steel, bolts, and shop labour. The parameters selected by the user 

in the control window are utilized in the subsequent stages of design and optimization of the steel 

connections. Furthermore, these parameters help to generate a reliable cost estimate for fabricating 

the structural steel framing and its connections. 

 

Figure 3-3: Control window script in Grasshopper 
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Figure 3-4 shows the portion of the Grasshopper script that extracts information from the Tekla 

model. After the user selects all the relevant members, the components extract the joints that 

require connections along with their available connection space and associated design loads. 

Typically, structural drawings provide a general statement for the required design force of 

connections, with specific design forces only specified for atypical cases. Therefore, to obtain the 

design load for each individual member, three approaches can be utilized: first, calculating the 

design load as the force required to reach 50% or 60% of the plastic moment capacity of the 

supported member (assuming the member is braced); second, calculating the design load as the 

force required to reach 50% or 60% of the shear capacity of the supported member adhering the 

design specifications of CSA S16-19 (CSA, 2019); or third, manually specifying the design loads 

by the user. Moreover, the data extracted from the Tekla model is employed to compute the total 

volume and weight of steel within the project, which is then utilized in both the optimization 

process and cost estimation discussed in Chapter 4.  

 

Figure 3-4: Tekla extraction in Grasshopper script 

The optimization algorithm is represented in the Grasshopper script by the portion illustrated in 

Figure 3-5. The yellow boxes located on the left-hand side correspond to additional user 
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preferences that can be readily customized by the steel fabricator. These preferences include 

options such as the type of connections, angle sizes, plate thicknesses, and fillet weld sizes, all of 

which can be specified according to the user's design and optimization requirements. For example, 
if the fabricator possessed a surplus of a particular angle size and plate thicknesses in their 

fabrication shop, they could specify only those options, and the optimization process would 

exclusively consider those choices. The remainder of the components correspond to the 

optimization algorithms and the post-processing procedures executed upon completion of the 

optimization process. Following the optimization process, the resulting solutions are exported to a 

spreadsheet, enabling the user to examine the various options and select the most appropriate 

choice that aligns with their specific needs. Once the design choice has been made, the 

corresponding connections are automatically detailed back into the Tekla model, and the relevant 

design calculations for each connection are exported into text files that can be examined by the 

connection designer.   

 

Figure 3-5: Optimization algorithm in Grasshopper script 

3.4 Connection Design Modules  
In this research project, the connections are limited to shear connections, which constitute the 

majority of connections in typical buildings, to ensure that the project scope remained feasible. 

Nonetheless, the optimization tool's underlying framework enables future researchers to 

incorporate additional connections, such as bracing, moment, axial, and other connection types, 
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into the tool in a straightforward manner. Figure 3-6 illustrates the specific shear connections 

selected for the optimization tool, which include all bolted double– and single–angle connections, 

welded–bolted double– and single–angle connections, and shear tabs. The shear connections 

evaluated in this project were chosen based on an industry survey conducted by the Steel Centre 

at the University of Alberta (Oosterhof, 2014). The survey was sent to local steel fabricators in 

Edmonton, Canada, where connection designers ranked common steel shear connections on a scale 

of one to five, with one corresponding to “rarely used” and five corresponding to “heavily used”. 

The results of the survey were averaged, and the top five connections were incorporated into the 

optimization tool. A connection design module was developed in C# for each of the five types of 

connections. These modules evaluate the capacity of the connections based on their parameters in 

accordance with the Canadian steel design standards CSA S16-19 (CSA, 2019), and American 

specification for structural steel buildings AISC 360-16 (AISC, 2016). The modules also consider 

various geometric constraints associated with each connection, such as bolt clashing, sufficient 

connection space, erection constraints, and code-required detailing requirements. The ultimate 

limit states that are considered for each connection type are tabulated in Table 3-1. 

 

Figure 3-6: (a) Bolted angle connection, (b) welded–bolted angle connection, (c) shear tab connection 

Every connection type is assigned its own dedicated design module. While some connection types 

may have similar limit states, they often have distinct geometric and erection constraints. 

Therefore, it is more practical to separate them into their own distinct modules. As a result, it 

becomes possible to incorporate additional connection design modules without impacting any of 

the existing ones. By developing the design modules in the C# programming language instead of 

spreadsheets, which is a common tool for connection designers, we gain the advantage of faster 

evaluation of limit states. This is especially beneficial for evaluating eccentric bolt and weld 
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groups, which require an iterative approach known as the instantaneous center (IC) of rotation 

method (Kulak et al., 1987; Lesik and Kennedy, 1990). Consider the following scenario: 

depending on the complexity of the spreadsheet, integrating VBA (Visual Basic for Applications) 

code for the IC method may require a few seconds to execute due to the need for every cell to 

update between iterations. When coupled with the requirement to run the IC method hundreds of 

times to optimize a specific connection, it could take minutes to even design one optimal 

connection. In contrast, C# executes the IC method within a few milliseconds. However, it worth 

noting that coding these ultimate limit state calculations can be considerably more laborious and 

time-consuming in comparison to implementing them in a spreadsheet environment. Nevertheless, 

the use of C# is heavily integrated throughout the optimization tool, eliminating the need to also 

incorporate design spreadsheets into the optimization process. 

Table 3-1: Ultimate limit states considered for shear connections 

Connection Type 
 

Limit States Considered 
 

 
 

Single angle bolted–bolted 
(SBB) 

Double angle bolted–bolted 
(DBB) 

• Bolt shear (S16-19 Cl. 13.12.1.2c) 
• Bolt bearing (S16-19 Cl. 13.12.1.2a) 
• Angle shear yielding (AISC 360-16 Eqn. J4-3) 
• Angle shear rupture (S16-19 Cl. 13.11) 
• Angle block shear (S16-19 Cl. 13.11) 
• Angle flexural yielding (AISC 360-16 Eqn. J4-5) 
• Angle flexural rupture (AISC 360-16 Eqn. J4-4) 

 
 

 
Single angle welded–bolted 

(SWB) 
Double angle welded–bolted 

(DWB) 

• Bolt shear (S16-19 Cl. 13.12.1.2c) 
• Bolt bearing (S16-19 Cl. 13.12.1.2a) 
• Angle shear yielding (AISC 360-16 Eqn. J4-3) 
• Angle shear rupture (S16-19 Cl. 13.11) 
• Angle block shear (S16-19 Cl. 13.11) 
• Angle flexural yielding (AISC 360-16 Eqn. J4-5) 
• Angle flexural rupture (AISC 360-16 Eqn. J4-4) 
• Weld strength (Instantaneous centre of rotation method (Lesik 

and Kennedy, 1990)) 
 
 

 
 

 
Shear tab (ST) 

• Bolt shear (S16-19 Cl. 13.12.1.2c) 
• Bolt bearing (S16-19 Cl. 13.12.1.2a) 
• Maximum plate thickness (AISC SCM 15th Ed. Eqn. 10-3) 
• Plate shear yielding (AISC 360-16 Eqn. J4-3) 
• Plate shear rupture (S16-19 Cl. 13.11) 
• Plate block shear (S16-19 Cl. 13.11) 
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• Plate flexural yielding (AISC SCM 15th Ed. Section F11) 
• Plate flexural rupture (AISC SCM 15th Ed. Section F11)  
• Plate interaction (AISC SCM 15th Ed. Eqn. 10-5) 
• Weld strength (S16-19 Cl. 13.13.2.2) 

 
 
 

All connections (coped) 
 

• Shear resistance of supported member (S16-19 Cl. 13.4.1.1) 
• Shear rupture of supported member (AISC 360-16 Eqn. J4-4) 
• Block shear of supported member (S16-19 Cl. 13.11) 
• Bending of coped section (AISC 15th Ed. Part 9 and AISC 

SCM 15th Ed. Section F11) 
 

3.5 Cost Estimation 
Cost estimation involves the task of anticipating the financial resources needed to accomplish a 

designated scope of work. In the context of fabricating steel structures, cost estimation becomes 

an exceedingly challenging undertaking. Nevertheless, achieving an accurate cost estimate 

throughout the design phase serves to minimize the likelihood of budget overruns, while 

simultaneously enabling fabricators to efficiently allocate resources across their various projects. 

In conventional practice, designers traditionally estimate the total installed cost of a steel frame 

structure by considering the weight of the steel during the early design stages (Haapio, 2012). 

Skitmore and Ashworth (1983) describe this approach as a rough estimate, as it relies on only a 

single variable. They highlight the need for additional variables to enhance the accuracy of the 

estimate, as the total installed cost of a steel frame is not a linear function of its weight. The total 

installed cost of a steel structure is primarily influenced by three key factors: the material, 

fabrication, and erection processes. 

Material costs encompass a range of components, including structural shapes, plates, bolt products, 

weld products, painting products, steel joints, steel deck, and any other necessary materials 

incorporated into the project. Among these, the weight of the structural shapes most significantly 

influences the material cost.  

Fabrication costs involve the detailing and labour process of preparing and assembling shop 

components such as structural shapes, plates, bolts, welds, and other materials. It accounts for all 

tasks associated with ensuring the components are ready for subsequent erection on-site, such as 

shop welding, fitting, and plate cutting, among others.  
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Erection costs encompass the labour required for unloading, lifting, placing, and connecting the 

various components of the structural steel frame (Carter and Schlafly, 2008). In summary, it can 

be represented by the field time required to assemble the steel structure. In addition to the 

aforementioned categories, cost estimation for a steel structure encompasses various other 

expenses that are not explicitly addressed. These include additional costs related to risk 

management, the need for contingency planning, fireproofing, and engineering design 

(Carter and Schlafly, 2008). A detailed breakdown of these categories is presented in Figure 3-7.  

 

Figure 3-7: Typical distribution of total installed cost of a typical building steel frame (Carter and Schlafly, 2008) 

For this research project, explicit consideration was given to material and fabrication costs, while 

the inclusion of erection costs was omitted primarily due to the lack of available data for erection-

related tasks. Nonetheless, certain erection-specific issues were addressed using alternative 

approaches. For shear connections, it is common practice to shop weld the connection elements 

and perform on-site bolting when feasible, thus minimizing the influence on erection expenses as 

reflected in the optimization tool. However, certain erection considerations may arise, such as the 

presence of angle connections on both sides of the web of a W-shape column. These specific 

considerations are addressed within the optimization process outlined in Section 4.4. 

The cost function utilized in the optimization tool is a result of a collaborative effort with a local 

steel fabricator. It was derived through a two-week study conducted within their fabrication shop. 

Valuable insights were gathered by engaging in discussions with operators, fitters, and welders 

Material Cost
27%

Fabrication Cost
33%

Erection Cost
27%

Other Cost
13%
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regarding the complexities of fabricating shear connections for steel structures. Timings of various 

tasks, outlined in Table 3-2, were recorded multiple times and averaged across different operators, 

fitters, and welders to ensure a comprehensive and representative evaluation. Following this, 

discussions were made with the estimators to compare the collected timings with their existing 

estimation practices. This collaboration contributed to enhancing the accuracy of the cost function. 

Notably, certain tasks displayed significant variability and were consolidated into broader 

categories, such as plate handling and section handling, to accommodate their diverse nature. This 

grouping approach enables a more comprehensive representation within the cost function, thereby 

facilitating a more precise estimation of associated expenses. 

To estimate the material and fabrication cost of the steel structure and its shear connections, the 

sections are extracted from the Tekla model. The lengths and profiles of these sections are 

determined, and the total weight is calculated. This weight is then multiplied by the user-defined 

rate for the material cost of the structural steel. 

For each individual shear connection, the optimization tool analyzes the parameters to determine 

the total time required to fabricate the connection. The rates outlined in Table 3-2 are used for this 

analysis. Additionally, the number of bolts for each connection is also consolidated. The resulting 

values are multiplied by the unit rates of the corresponding shop labour, generating a final cost 

estimate. 

In the case of manual coping, it is considered only if the fabricator specifies the absence of a beam 

line capable of automatically coping its members. In such situations, manual coping performed by 

the fitter is necessary, leading to increased time and costs. Alternatively, if automatic coping is 

available, it is included within the section handling process. 

As mentioned earlier, the current cost function concentrates exclusively on material and fabrication 

costs, omitting erection expenses. Nevertheless, its main objective is to provide a dependable 

estimate for the fabrication expenditures associated with a steel building. Notably, the labour and 

material rates incorporated in the cost function are adjustable, enabling users to customize them to 

suit their specific needs. The C# framework also facilitates the modification of rates outlined in 

Table 3-2, enhancing the flexibility of the cost function. The significance of this cost function 

becomes evident during the optimization process, outlined in Chapter 4, where the primary aim is 

to minimize costs associated with fabricating a steel structure. 
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Table 3-2: Price rates for the cost function for various tasks 

Material Element Rate Description 

Hot-rolled sections  User defined ($/kg) Price rate for hot-rolled sections.  
Bolts User defined ($/bolt) Price rate for individual bolts.  
   
Fabrication Element   

Shop operator  User defined ($/hr) Price rate for labour associated with the 
operator. 

Shop fitter User defined ($/hr) Price rate for labour associated with the fitter. 
Shop welder User defined ($/hr) Price rate for labour associated with the 

welder. 
Angle handling 15 min/stock angle Minutes of shop time to load, unload, and 

move stock angles around the shop. 
Angle hole punching 0.1 min/hole Minutes to punch a hole in an angle. 
Angle shearing 0.17 min/shear Minutes to shear an angle from the stock angle. 
Fit and QC angle 4 min/angle Minutes to fit the angle to the appropriate 

member and provide an inspection for quality 
control. 

Plate handling 7.2 min/plate  Minutes of shop time to move the plates 
around the shop and layout operations. 

Plate cutting 0.0033 min/cm2 Minutes to cut the perimeter of the plate 
multiplied by the plate’s thickness  

Plate hole drilling 0.033 min/cm2 Minutes to drill a hole in a plate. 
Section handling 45 min/section Minutes to load, unload, and move steel 

sections around the shop. Coping is also 
included if the adequate machinery is 
available. 

Section hole drilling 1 min/hole Minutes to drill a hole in a steel section. 
Manual coping 45 min/section Minutes to manually cope a member.  
Shop fillet welds 0.262 min/cm Minutes to weld fillet connections including 

set-up time. Rate is based on the length of the 
weld. Larger fillet welds that require multiple 
passes are accounted for.  

Shop bolt install 1 min/bolt Minutes to install a bolt in the shop.  
 

3.6 Metaheuristics 
As discussed in Chapter 2, metaheuristic algorithms use stochastic search strategies to efficiently 

explore the search space to find near-optimal or global optimum solutions. They are an effective 
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way to find a range of optimal solutions for multi-objective optimization problems. Existing 

evolutionary solvers such as Galapagos (Rutten, 2019) or Wallacei (Makki et al., 2022)  are among 

the most commonly used methods of employing metaheuristics in Grasshopper. However, these 

solvers have several drawbacks, including their limitations to only one algorithm, difficulty 

optimizing general variable types, and their inability to export results outside of Rhino. These 

limitations significantly hinder the ability to implement an appropriate optimization procedure for 

this research project, as explained further in Chapter 4. Therefore, this project uses jMetal.NET, 

an object-oriented framework for multi-objective optimization, instead. 

jMetal, which stands for Metaheuristic Algorithms in Java, is a well-established research project 

that provides a suite of classical and state-of-the-art metaheuristic algorithms. The .NET version 

of jMetal allows for the use of C# to implement the framework, making it a versatile tool for 

solving real-world problems and conducting experiments in a Windows-based environment. The 

object-oriented framework of jMetal further simplifies the implementation of the algorithms, 

enabling researchers to explore different optimization techniques with ease (Durillo et al., 2010; 

Durillo and Nebro, 2011). More information regarding jMetal and its toolbox of available 

metaheuristic algorithms can be found here: https://jmetal.sourceforge.net/.  

This research project investigates three algorithms for optimization: Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), and a 

specific Multi-objective Particle Swarm Optimization (MOPSO) known as the Speed-constrained 

Multi-objective Particle Swarm Optimization (SMPSO). The selection of these three algorithms 

was informed by a survey conducted by Zavala et al. (2014), which analyzed the application of 

multi-objective metaheuristics in structural optimization across 50 publications published between 

1992 and 2012. According to the researchers, the NSGA-II was the most commonly used 

technique, followed by SPEA2 and MOPSO. While this study focused solely on these three 

algorithms, it is worth noting that the optimization tool can be extended to include other 

metaheuristics in future research. Below, a summary of the three algorithms is provided. For 

in-depth information on NSGA-II, refer to Deb et al. (2002); for SPEA2, consult 

Zitzler et  al. (2001); and for further details on SMPSO, refer to Nebro et al. (2009). 

Over the last two decades, a popular sorting-based multi-objective evolutionary algorithm called 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) has seen lots of success in the field of 

https://jmetal.sourceforge.net/
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engineering (Madeira et al., 2005; Sharma et al., 2011; Stankovic et al., 2011; Stanković et al., 

2012; Tang et al., 2011; Winslow et al., 2010). NSGA-II solves MOOPs through Pareto dominance 

and a sorting procedure known as non-dominated sorting. A solution is considered to dominate 

another solution if all its fitness values, determined from the user-defined objective criteria, are 

lower than or equal to another solution’s fitness values. An example of non-dominated sorting for 

a double objective problem is illustrated in Figure 3-8. During non-dominated sorting, solutions 

are compared against each other and are assigned ranks based on dominance. Lower ranks refer to 

better fitness values and are associated with solutions that have higher dominance. In MOOPs, a 

solution is said to be a Pareto optimal solution if it is not dominated by any other solution of the 

MOOP. There exists more than one Pareto optimal solution for an MOOP due to the conflicting 

nature of objectives. At each generation of NSGA-II, non-dominated sorting is first employed to 

select solutions with lower ranks from the parent and offspring populations, and crowding distance 

is used as the secondary metric to distinguish solutions in the same rank by favouring solutions 

with a large crowding distance (Deb et al., 2002; Tian et al., 2017).  

 

Figure 3-8: Illustration of non-dominated sorting with the population divided into three ranks (Tian et al., 2017) 

Another elitist multi-objective evolutionary algorithm that has seen success in the engineering field 

is the SPEA2 (Greiner et al., 2011; Kicinger et al., 2007; Kunakote and Bureerat, 2011; Noilublao 

and Bureerat, 2009). Originally developed by Zitzler et al. (2001), SPEA2 shares similarities with 

the NSGA-II as it adopts an evolutionary Pareto-based approach to generate a set of optimal 
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solutions for MOOPs. The algorithm begins by creating an initial population where each individual 

is evaluated and has a fitness value that is the sum of its strength raw fitness plus a density 

estimation. Non-dominated individuals are then copied to an archive or external set. If the archive 

exceeds its capacity, a truncation operator using k-th nearest neighbour (Silverman, 1986) is 

implemented, ensuring that individuals are removed in a manner that preserves the distinctive 

characteristics of the non-dominated front, as shown in Figure 3-9. Subsequently, a binary 

tournament selection mechanism is employed to populate the mating pool, followed by the 

application of recombination and mutation operators to generate a new parent population for the 

subsequent iteration (Zitzler et al., 2001). The researchers noted that the SPEA2 seems to have 

advantages over the NSGA-II in higher dimensional objective spaces.  

 

Figure 3-9: Illustration of the archive truncation method used in SPEA2. On the left, a non-dominated front set is 
shown. On the right, solutions are removed ordered by the truncate operator (assuming the archive size is 5) 

Particle Swarm Optimization (PSO) is a metaheuristic inspired by the collective behaviour of birds 

flocking or fish schooling (Kennedy and Eberhart, 1995). By simulating the social interactions and 

adaptive movements observed in these natural phenomena, PSO creates a population of particles 

that explore the search space in a cooperative manner. Each particle adjusts its position based on 

its own experience as well as the knowledge shared within the group known as the swarm. In multi-

objective optimization, each particle represents one potential solution and all the particles in the 

swarm can search for different parts of the Pareto front simultaneously (Durillo et al., 2009; Wang 

and Qian, 2008; Kennedy and Eberhart, 1995). One drawback of MOPSO is the potential for 

excessively high particle velocities for certain optimization problems leading to unsatisfactory 

solutions. Durillo et al. (2009) proposed using a velocity constriction procedure to solve the 
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aforementioned problem, which forms the basis for the SMPSO algorithm that is used in this 

research project (Durillo et al., 2009).  

As previously mentioned, a variety of metaheuristics are available for potential utilization in this 

research project. The performance of different algorithms varies depending on the specific 

optimization problem at hand. In the context of minimizing the fabrication cost of a steel structure, 

the NSGA-II algorithm emerged as the most effective among the three algorithms discussed in this 

chapter. Further elaboration on this topic will be provided in Chapters 4 and 5.  
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4 APPLICATION OF OPTIMIZATION TOOL 

4.1 Introduction 
This chapter delves into the design of each type of connection, as well as the optimization 

procedure employed by the optimization tool. This approach utilizes a two-tiered optimization 

strategy as depicted in Figure 4-1, aiming to minimize the combined cost and weight of a steel 

structure and its connections in a designated building project. In the initial optimization layer, the 

focus lies on designing and optimizing multiple connections at each necessary joint, taking into 

account the user’s preferred connection type selection. In the secondary optimization layer, 

metaheuristics are employed to identify the most optimal combination of connections throughout 

the entire structure, with the overarching goal of minimizing the overall cost and weight.  

Figure 4-1 employs distinct colors to represent each stage: the initial parameters provided by the 

user are represented in blue, followed by the first layer of optimization in yellow, the second layer 

of optimization in red, and finally, the post-processing stage in green, where the optimization tool 

displays the results for the user.  

In this chapter, the design of each connection is initially explored, followed by an in-depth 

investigation into the optimization process of each individual connection. Subsequently, the focus 

shifts to the second layer of optimization, encompassing an overarching analysis of the entire 

optimization procedure. This is followed by a detailed discussion of the specific parameters 

associated with the employed metaheuristics. 

4.2 Design and Optimization of Connections  
The optimization tool incorporates five distinct types of shear connections, encompassing all 

bolted double- and single-angle connections, welded–bolted double- and single-angle connections, 

and shear tab connections. Each of these connections is evaluated using the developed connection 

design modules, adhering to the Canadian steel design standard CSA S16-19 (CSA, 2019) and the 

American specification for structural steel buildings AISC360-16 (AISC, 2016), as detailed in 

Section 3.4. As previously mentioned, the optimization tool exclusively focuses on shear 

connections. Nevertheless, the design modules for connections are developed in C# as classes 

within an object-oriented framework, facilitating ease of integration of additional connection 
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types, including axial, moment, or bracing connections. This can be achieved by introducing 

another class to this framework. 

 

Figure 4-1: Flowchart of optimization procedure utilized by the optimization tool 

The joints extracted from Tekla can be categorized into four distinct framing configurations: 

beam-to-column-flange, beam-to-column-web, beam-to-HSS-column, and beam-to-beam. These 

four framing configurations are illustrated in Figure 4-2. Additionally, there are other framing 

configurations that require design considerations beyond shear alone, although these are currently 

not accounted for in the optimization tool. It is worth emphasizing the significance of extracting 

this information from the Tekla model, as certain connection types offer distinct advantages based 
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on the framing configuration. Moreover, fabricators often have their preferred connection types, 

further highlighting the importance of aligning with their preferences. 

 

Figure 4-2: Typical framing configurations for shear connections: (a) beam-to-column-flange, (b) beam-to-column-
web, (c) beam-to-HSS-column, (d) beam-to-beam 

Additional information, including the slope and skew angle of the supported member in relation 

to the support member, the elevation difference between the support and supported member, as 

well as the steel profiles of both members, is also extracted from the Tekla model. This crucial 

information plays a vital role in determining the geometric constraints which are used extensively 

during the design and optimization process. 

As outlined in Section 3.3, there are three approaches available in the tool for determining the 

factored design load for each individual connection. These approaches are:  
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1. Calculating the design load as the reaction force consistent with achieving 50% of the 

factored plastic moment capacity of the supported member, in accordance with CSA 

S16-19, assuming the member is laterally braced. 60% of the factored plastic moment 

capacity of the supported member may also be selected. 

2. Calculating the design load as 50% of the shear capacity of the supported member, in 

accordance with CSA S16-19. 60% of the shear capacity of the supported member may 

also be selected. 

3. Manually specifying the design loads directly within the Tekla model. 

Additionally, AISC (2019) recommends that the minimum depth of simple shear connections 

exceed one-half of the T-dimension of the supported member to achieve connection stability. The 

T-dimension refers to the distance between the web toes of the fillet of the top and bottom flanges.  

In the case of a coped supported member, this criterion is adjusted to be one-half of the remaining 

web depth of the supported member (AISC, 2019). The connection element may encroach upon 

the fillet of the supported member slightly, as shown in Table 4-1. 

Table 4-1: Allowable fillet encroachment (CISC, 2021) 

 Fillet radius 
k – t 
(mm) 

Encroachment 
 

(mm) 
8 3 

9 4 

10 4 

12 4 

14 5 

16 5 

18 5 

20 6 

22 6 

24 6 

26 7 
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The specific ultimate limit states considered for each connection type are outlined in Table 3-1. 

While the details of these limit states are not discussed here, readers seeking more information can 

refer to CSA S16-19 and AISC360-22 (AISC, 2022) for comprehensive explanations. The design 

and optimization process of the connections are implemented using C#. Notably, the optimization 

of connections is accomplished through a script rather than employing metaheuristics. This 

decision was primarily motivated by the significant difference in optimization speed. Given the 

relatively large search space for a seemingly simple design problem, metaheuristics like the 

NSGA-II required a considerable amount of time to properly optimize a connection. In contrast, 

the script enabled optimization of an individual connection within one millisecond, whereas 

metaheuristics required approximately five seconds per connection, about five thousand times 

faster. Additionally, it should be emphasized that during a single-objective optimization of the 

connection, aiming to maximize the demand-to-capacity ratio while adhering to the constraint of 

not exceeding 1.0, the NSGA-II algorithm consistently produced identical results to those achieved 

by the optimization script for all five connection types.  

The subsequent sections provide a comprehensive explanation of the design and optimization 

process for each specific connection type. 

4.2.1 Bolted–Bolted Angle Connections  
The design and optimization of a bolted–bolted angle connection incorporates several key 

parameters: 

1. Angle designation: This parameter refers to the size of the angle that will be used. It is 

selected from a list of angles specified by the user before the optimization process. 

2. Number of bolt rows: This parameter determines the number of (horizontal) rows of bolts 

that will be used in the connection. 

3. Number of bolt columns in the short leg: This parameter indicates the number of (vertical) 

columns of bolts in the short leg of the angle, with a maximum of 2. 

4. Number of bolt columns in the long leg: This parameter represents the number of columns 

of bolts in the long leg of the angle, also with a maximum of 2. 

5. Vertical bolt pitch: This parameter denotes the vertical centre-to-centre distance between 

the bolt rows. 
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6. End distance: This parameter specifies the distance between the centres of the top and 

bottom bolts and the top and bottom edges, respectively, of the angle. 

7. Orientation of the legs: This parameter determines how the short and long legs of the angle 

are connected to the supporting and supported members. 

These parameters are adjusted during the optimization of the connection such that the 

demand-to-capacity ratio is maximized, while maintaining a ratio equal to or below 1.0. The end 

distance is fixed to the minimum allowable distance as prescribed by S16-19. For bolted–bolted 

single angle connections, eccentricity must be taken into account for the outstanding framing leg 

at all times. However, eccentricity in the web framing leg only needs to be considered when the 

gauge exceeds 75 mm or when two columns of bolts are utilized (AISC, 2019). In Figure 4-3, the 

requirement for eccentricity is indicated by the letter E, while g represents the maximum gauge 

before eccentricity needs to be taken into consideration for that particular leg. For bolted–bolted 

double angle connections, there is no need to consider eccentricity for the outstanding framing leg. 

However, the web framing leg of the double angle connection follows the same criteria as the 

single angle connection. For this reason, the short leg of the angle is always assumed to be oriented 

such that it connects to the support member during the optimization procedure. The gauges for the 

specific angle sizes are taken from the CISC Handbook of Steel Construction (CISC, 2021). An 

illustration of this type of connection is shown in Figure 4-4. 

 

Figure 4-3: Eccentricity in single angle bolted connections 
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Figure 4-4: Bolted–bolted single angle connection of a L127x89x9.5 angle: (a) front view, (b) side view, (c) 
isometric view 

The connection design module for bolted–bolted angle connections also ensures the adherence to 

design integrity by verifying various geometric constraints. These constraints, essential for 

meeting detailing requirements, include: 

1. Support spacing: Verifies if the specified angle size and orientation fit within the available 

space provided by the support member. 

2. Bolt spacing: Checks if the bolt pitch adheres to the minimum pitch specified in CSA S16 

for the given bolt size. 

3. Bolt clashing: Examines whether the bolts would collide, following the detailing 

requirements outlined in the CISC Handbook of Steel Construction for the given bolt size.  

4. Edge distance: Verifies if the minimum edge distance requirement, as specified in CSA 

S16 for the given bolt size, is met.  

5. Skew angle: Determines if the supported member is skewed relative to the support member, 

as a bolted–bolted angle connection cannot be used in such cases. 
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6. HSS support member: Determines if the support member is an HSS column since the 

optimization tool does not currently support thru-bolts, making a bolted–bolted angle 

connection unsuitable in this particular scenario. 

7. Depth of connection: Determines if the depth of the connection satisfies the connection 

stability requirement.  

8. Connection space: Verifies the availability of sufficient space for the given connection 

detail.  

The optimization procedure for bolted–bolted single- and double- angle connections follow a 

similar approach, with the only distinction lying in the evaluated limit states between these 

connection types. The procedure can be divided into three steps. First, the design parameters are 

initialized, and incompatible angle sizes are filtered out. This ensures that only appropriate angle 

sizes are considered for the optimization process. Next, the minimum number of bolts and smallest 

angle size that satisfy the strength requirements are determined through an iterative process. 

Finally, in cases where a coped supported member is involved, the limit states related to it are 

evaluated. Concurrently, the material usage is optimized by reducing the bolt pitch, while 

maintaining the necessary strength requirements. 

Figure 4-5 illustrates the initial step of the procedure. In this step, the list of angles provided by 

the user is sorted in ascending order based on leg size and thickness. This sorting approach ensures 

that the angle sizes are iterated from smallest to largest, facilitating the selection of the optimal 

angle size in subsequent stages. Figure 4-5 also indicates the initial design parameters. The number 

of bolt rows is set to a minimum of 2, with the option to add more bolts if necessary. The number 

of bolt columns is set to 1. The vertical bolt pitch is initially set as the maximum bolt pitch, the 

lesser of 14 times the thickness of the thinner connected part or 180 mm as per AISC Specification 

J3.5 (AISC, 2016). This allows for gradual adjustments and fine-tuning of the bolt pitch by 

decreasing it before considering the addition of more bolts.   
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Figure 4-5: Flowchart of initial step of optimization procedure for bolted–bolted angle connections 

Figure 4-6 provides an illustration of the second step of the procedure, which is carried out 

separately for both the web framing leg and the outstanding framing leg. This section follows an 

iterative approach to ensure the availability of connection space for adding additional bolts to 

satisfy the limit states associated with the bolt group. Simultaneously, it iterates through the list of 

angles to identify the smallest angle size that meets the required strength criteria. It is important to 
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note that certain cases may arise where a satisfactory connection design cannot be achieved, such 

as when the number of required bolts exceeds the available connection space. 

 

Figure 4-6: Flowchart of second step of optimization procedure for bolted–bolted angle connections 

Figure 4-7 provides an overview of the final step of the optimization procedure. Once the bolt 

group and angle size have been determined, the optimization script proceeds to evaluate whether 

the supported member is coped. In the case of a coped member, additional limit states specific to 

the coping are assessed. It is crucial to note that if the limit states associated with the coped member 

fail to meet the required strength criteria, the connection type will be deemed unsuitable at this 

stage. This is because any further adjustments to the bolt group would lead to an unsatisfactory 
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connection according to the bolt limit states. However, if the limit states for the coped member are 

met or if the supported member is not coped, the bolt pitch is then further reduced, aiming to 

minimize material usage while still satisfying the required strength criteria. The final connection 

design results in a bolted–bolted angle connection with satisfied geometric constraints and a 

demand-to-capacity ratio that is maximized while remaining below 1.0. 

 

Figure 4-7: Flowchart of final step of optimization procedure for bolted–bolted angle connections 

4.2.2 Welded–Bolted Angle Connections 
The design and optimization of a welded–bolted angle connection incorporates several key 

parameters: 

1. Angle designation: This parameter refers to the size of the angle that will be used. It is 

selected from a list of angles specified by the user before the optimization process. 

2. Number of bolt rows: This parameter determines the number of rows of bolts that will be 

used in the connection. 
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3. Number of bolt columns: This parameter indicates the number of columns of bolts in the 

angle, with a maximum limit of 2. 

4. Fillet weld leg size: This parameter refers to the size of the fillet weld that will be used in 

the connection.  

5. Vertical bolt pitch: This parameter denotes the vertical distance between the bolt rows. 

6. End distance: This parameter measures the distance between the outermost bolts and the 

top and bottom edges of the angle. 

7. Orientation of the legs: This parameter determines how the short and long legs of the angle 

are connected to the supporting and supported members. 

8. Location of the weld: This parameter indicates whether the angle is welded to the support 

or the supported member. 

9. Wrapping of the angle: This parameter determines if the angle is wrapped around the web 

of the supported member, that is, the web is on the inside face of the angle.  

These parameters are adjusted during the optimization of the connection such that the 

demand-to-capacity ratio is maximized while maintaining a ratio equal to or below 1.0. Similar to 

the bolted–bolted angle connections, the edge distance is also taken as the minimum allowable 

edge distance specified by S16-19. The gauges for the specific angle sizes are taken from the CISC 

Handbook of Steel Construction. An illustration of this type of connection is shown in Figure 4-8. 

According to AISC (2019), it is more convenient to calculate the minimum base metal thickness 

required to align the available shear rupture strength of the base metal with that of the welds than 

the available strength of the connecting element. For fillet welds, the minimum base metal 

thickness requirement to match the shear rupture strength of the weld is  

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸

√2
2 𝐷𝐷

𝐹𝐹𝑢𝑢
 

where 

D = leg dimension of the fillet weld 

FEXX = strength of the filler metal 

Fu = specified minimum tensile strength of the base metal 
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Figure 4-8: Welded–bolted angle connection of a 2L89x64x9.5 angle: (a) front view, (b) side view, (c) isometric view 

In the case of double welded–bolted angle connections where fillet welds are applied on both sides 

of an element, particularly when welded to the web of the supported member, the minimum base 

metal thickness needed to align with the shear rupture strength of the weld is doubled.  

For ease of erection, it is assumed that welded–bolted angle connections are welded to the support 

during the optimization procedure. While this assumption may not always hold true, welding the 

connection to the support also mitigates challenges related to the minimum base metal thickness 

requirement for welded–bolted double angle connections. For welded–bolted single angle 

connections, the weld is applied to the heel of the angle as opposed to the toe, and the angle wraps 

around the web of the supported member, as depicted in Figure 4-9. This arrangement serves to 

reduce the eccentricity from the centre of gravity of the weld group relative to the applied load and 

allows for additional spacing at the support member. Additionally, the short leg of the angle is 

welded to the support to further reduce the eccentricity of the weld group. 
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Figure 4-9: Eccentricity of weld group for a single welded–bolted angle connection 

In order to maintain design integrity, the connection design module verifies compliance with 

various geometric constraints. These constraints encompass the following: 

1. Support spacing: Verifies if the specified angle size and orientation fit within the available 

space provided by the support member. 

2. Bolt spacing: Checks if the bolt pitch falls within the allowable range specified in CSA 

S16 for the given bolt size. 

3. Bolt clashing: Examines whether the bolts would collide, following the detailing 

requirements outlined in the Canadian Handbook of Steel Construction for the given bolt 

size.  

4. Edge distance: Verifies if the minimum edge distance requirement, as specified in CSA 

S16 for the given bolt size, is met.  

5. Skew angle: Determines if the supported member is skewed relative to the support member, 

as a bolted–bolted angle connection cannot be used in such cases. 

6. HSS support member: In the case where the support member is identified as an HSS 

column, welding the angle to the support member becomes necessary due to the limitation 

of the optimization tool, which does not currently support the utilization of through-bolts. 
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7. Weld size: Verifies that the fillet weld size adheres to the guidelines specified in the CISC 

handbook. 

8. Depth of connection: Determines if the depth of the connection satisfies the connection 

stability requirement. 

9. Connection space: Verifies the availability of sufficient space for the given connection 

detail.  

The optimization procedures for welded–bolted single- and double- angle connections follow a 

similar approach, with the main distinction lying in the evaluation of limit states that are specific 

to each connection type. The optimization procedure can be divided into four steps. It begins with 

the initialization of design parameters and the filtering out of incompatible angle sizes, ensuring 

that only suitable angle sizes are considered for the optimization process. Next, an iterative process 

determines the minimum number of bolts and the corresponding angle size that satisfy the strength 

requirements. Subsequently, the minimum weld size is determined, and a final evaluation is 

conducted to identify the smallest suitable angle size that meets the strength requirements. In the 

case where the supported member is coped, the associated limit states are assessed and the material 

usage is minimized through the reduction of bolt pitch, all while ensuring the required strength 

requirements are met. 

Figure 4-10 illustrates the initial step of the optimization procedure. In this step, the list of angles 

provided by the user is sorted in ascending order based on leg size and thickness. Simultaneously, 

the list of weld sizes provided by the user is also sorted in ascending order based on the size of the 

fillet welds. This sorting approach ensures that the angle and weld sizes are iterated from smallest 

to largest, facilitating the selection of the most optimal angle and weld size in subsequent steps. 

The initial design parameters are also shown in Figure 4-10. The number of bolt rows is set to a 

minimum of 2, with the option to add more bolts if necessary. Similarly, the number of bolt 

columns is also initially set to the minimum requirement of 1. The vertical bolt pitch is initially set 

as the maximum bolt pitch, the lesser of 14 times the thickness of the thinner connected part or 

180mm as per AISC Specification J3.5 (AISC, 2019). This allows for gradual adjustments and 

fine-tuning of the bolt pitch by decreasing it before considering the addition of more bolts.  



55 

Figure 4-10: Flowchart of initial step of optimization procedure for welded–bolted angle connections 

Figure 4-11 depicts the second step of the optimization procedure, which employs an iterative 

approach to ensure adequate connection space for accommodating additional bolts to satisfy the 

limit states pertaining to the bolt group. Concurrently, it iterates through the list of angles to 

identify the smallest angle size that meets the requirements imposed by the bolt group. Just like in 
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bolted–bolted angle connections, there may be instances where it is not possible to achieve a 

suitable connection. 

 

Figure 4-11: Flowchart of second step of the optimization procedure of welded–bolted angle connections 

Figure 4-12 provides an overview of the third step of the optimization procedure. In this section, 

an iterative process is used to determine the minimum weld size that will satisfy the limit states 

pertaining to the weld group. Unsuitable weld and angle sizes are iteratively removed from their 

respective lists until a suitable weld size is determined.  
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Figure 4-12: Flowchart of third step of optimization procedure for welded–bolted angle connections 

Figure 4-13 provides an overview of the final section of the optimization procedure. Once the bolt 

group, weld group and angle size have been determined, the optimization script proceeds to 
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evaluate whether the supported member is coped. In the case of a coped member, additional limit 

states specific to the coping are assessed. If the limit states for the coped member are met or if the 

supported member is not coped, the bolt pitch is then further reduced, aiming to minimize material 

usage while still satisfying the required strength criteria. The final connection design results in a 

welded–bolted angle connection with a maximized demand-to-capacity ratio while maintaining a 

ratio below 1.0. 

 

Figure 4-13: Flowchart of final step of optimization procedure for welded–bolted angle connections 

4.2.3 Shear Tab Connections 
The design and optimization of a shear tab connection incorporates several key parameters: 

1. Plate thickness: This parameter denotes the thickness of the shear tab plate in mm.  

2. Number of bolt rows: This parameter determines the number of rows of bolts that will be 

used in the connection. 
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3. Number of bolt columns: This parameter indicates the number of columns of bolts in the 

angle, with a maximum of 2. 

4. Vertical bolt pitch: This parameter denotes the vertical distance between the bolt rows. 

5. Horizontal bolt pitch: This parameter denotes the horizontal distance between the bolt 

columns. 

6. End distance: This parameter measures the distance between the outermost bolts and the 

top and bottom edges of the plate. 

7. Edge distance: This parameter measures the distance between the outermost bolts to the 

edge of the supported member and the plate. 

Similar to the other types of connections, these parameters are adjusted during the optimization of 

the connection such that the demand-to-capacity ratio is maximized while still maintaining a ratio 

below 1.0. It is important to mention that the dimensions of the plate, including its length, width, 

and depth, are determined by the number of bolt rows and columns, the bolt pitch, and the edge 

and end distances. Both the vertical and horizontal edge distances are taken as the minimum 

allowable edge distance specified by S16-19. Likewise, the horizontal bolt pitch is established 

based on the minimum allowable bolt pitch specified in S16-19. 

The weld size is determined in such a way that the plate yields before the weld fractures. Muir and 

Hewitt (2019) derived a ratio between the weld size and plate thickness based on the equations for 

weld rupture and plate yield strength, resulting in a closed-form solution. The equation is as 

follows: 

𝑤𝑤 ≥  
𝑡𝑡𝑝𝑝𝐹𝐹𝑦𝑦√3
2𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸

 

where 
w = fillet weld size 

tp = plate thickness 

Fy = yield strength of the plate 

FEXX = strength of the filler metal 

In their work, the Muir and Hewitt (2019) assumed Fy = 50 ksi and FEXX = 70 ksi, leading to a 

required weld thickness equal to or greater than 5/8 of the plate thickness (Muir and Hewitt, 2009). 
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However, in the context of the optimization tool, FEXX is assumed to be the strength of an E49XX 

electrode (490 MPa), and Fy is based on the user's selection, typically 300W steel for plates.  

AISC outlines two distinct configurations for shear tab connections: the conventional 

configuration, which necessitates adherence to specific dimensional and other limitations outlined 

in the AISC Steel Construction Manual (AISC, 2019) and research conducted by Muir and 

Thornton (2011), and the extended configuration. The extended configuration comes into play 

when the dimensional and other limitations of the conventional method cannot be met. Both 

configurations are employed in the optimization tool and are considered in their respective 

circumstances. An example of a shear tab connection is illustrated in Figure 4-14.  

 

Figure 4-14: Shear tab connection: a) side view, b) isometric view 

The various geometric and ductility constraints associated with shear tab connections are evaluated 

within the connection design module. These constraints are as indicated:  

1. Maximum plate thickness: This criterion validates whether the plate thickness is sufficient 

to protect the bolt group by yielding before bolt shear occurs (Muir and Hewitt, 2009). The 

maximum plate thickness is determined based on the bolt group strength specified in the 

AISC Steel Construction Manual. 

2. Bolt spacing: This check ensures that the bolt pitch falls within the allowable range 

specified in CSA S16 for the given bolt size. 
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3. Edge distance: This criterion verifies if the minimum edge distance requirement, as 

specified in CSA S16 for the given bolt size, is met. 

4. Skew angle: This assessment determines whether the supported member is skewed more 

than 60° relative to the support member, as shear tab connections cannot be used in such 

cases. 

5. Depth of connection: Determines if the depth of the connection satisfies the connection 

stability requirement. 

6. Connection space: Verifies the availability of sufficient space for the given connection 

detail.  

The optimization process for a shear tab connection comprises four key steps. It commences by 

initializing design parameters and identifying incompatible joints, specifically those where 

supported members have skew angles exceeding 60° relative to the line perpendicular to the 

support. Following that, an iterative approach is employed to establish the minimum number of 

bolts necessary to meet the strength criteria. A minimum plate thickness is then chosen to ensure 

it satisfies the strength requirements. In cases where the supported member is coped, the associated 

limit states are evaluated while simultaneously optimizing material usage through the reduction of 

bolt pitch.  

Figure 4-15 visually presents the first step of the optimization procedure, which involves sorting 

the user-provided list of plate thicknesses in ascending order. This sorting approach ensures that 

plate sizes are iterated in an ascending order of thickness, ensuring the selection of the most 

optimal plate thickness when sizing the plate. The flowchart in Figure 4-15 also depicts the initial 

design parameters. The number of bolt rows is initially set to a minimum of 2, with the flexibility 

to add more bolts, if necessary, while the number of bolt columns is set to 1. To facilitate gradual 

adjustments and fine-tuning of the bolt pitch, the vertical bolt pitch is initially established as the 

maximum allowable value. This approach enables subsequent reductions in the bolt pitch before 

considering the addition of more bolts. Furthermore, the skew angle of the supported member 

relative to the support is verified to ensure it does not exceed 60°. This verification step is crucial, 

as a shear tab connection would not be suitable in cases where the skew angle exceeds the specified 

limit. 
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Figure 4-15: Flowchart of initial step of optimization procedure for shear tab connections 

Figure 4-16 illustrates the second step of the optimization procedure, which utilizes an iterative 

method to ensure sufficient connection space for accommodating additional bolts that meet the 

limit states associated with the bolt group. In essence, this step involves analyzing the limit states 

related to the bolt group and determining if the demand-to-capacity ratio exceeds 1.0. If it does, 

additional bolt rows are added, provided there is adequate connection space available. Once the 

maximum connection space has been attained, the optimization process transitions to adding an 

extra bolt column instead, with a maximum of two bolt columns. Once the bolt group is optimized, 

the process proceeds to optimizing the plate of the shear tab connection. If it is not possible to 

achieve a bolt group configuration that satisfies the strength requirements, the shear tab connection 

will be deemed unsuitable in such cases. 
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Figure 4-16: Flowchart of second step of optimization procedure for shear tab connections 

Figure 4-17 illustrates the third step of the optimization procedure, which utilizes an iterative 

method to determine the minimum plate thickness required to satisfy strength requirements. 

Following this step, the procedure reaches its final step which aims to optimize the material usage 

depicted in Figure 4-18. The optimization script proceeds to evaluate whether the supported 

member is coped. In the case of a coped member, additional limit states specific to the coping are 

assessed. Similar to the other type of connections, if the limit states associated with the coped 

member fail to meet the required strength criteria, the connection type will be deemed unsuitable 

at this stage. This is because any further adjustments to the bolt group would lead to an 

unsatisfactory connection according to the bolt limit states. However, if the limit states for the 

coped member are met or if the supported member is not coped, the bolt pitch is then further 

reduced, aiming to minimize material usage while still satisfying the required strength criteria. The 

final connection design results in a shear tab connection with a maximized demand-to-capacity 

ratio while maintaining a ratio below 1.0. 
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Figure 4-17: Flowchart of third step of optimization procedure for shear tab connections 

 

Figure 4-18: Flowchart of final step of optimization procedure for shear tab connections 
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4.3 Optimization Procedure 
In order to reduce both the cost and weight of the structure, a two-tiered optimization strategy is 

implemented as illustrated in Figure 4-1. In the first optimization phase, multiple connections at 

each joint are designed and optimized using limit states design. In the subsequent phase, 

metaheuristics are employed to identify the most optimal combination across the entire structure. 

While the cost function inherently incorporates the weight of the structure, it is important to 

explicitly consider weight as an additional objective in the optimization process to evaluate its 

impact on the overall cost. This approach not only yields valuable insights into the effectiveness 

of the optimization procedure for multi-objective problems, but also provides insight for future 

research involving other objectives. Since this optimization problem involves minimizing both 

cost and weight, the process generates a range of solutions for the user to further refine or utilize 

immediately. Finally, the optimization tool automatically details the preferred solution and its 

corresponding connection details directly into the user's Tekla model. The rationale behind this 

approach is the immense scope of the search space, which would have posed a significant 

computational burden had a single optimization procedure been employed. The utilization of 

metaheuristics under such circumstances would have rendered the task highly computationally 

expensive.   

To illustrate this point, it is important to note that each joint requires its own set of variables, 

representing the parameters for designing the specified shear connection type. As a result, 

buildings with thousands of connections would necessitate tens, if not hundreds, of thousands of 

variables to be evaluated before a single solution could be obtained. Considering that 

metaheuristics typically require thousands of evaluations to approach the global optimum, the scale 

of this task becomes prohibitively large. By dividing the optimization procedure into two distinct 

layers, the design of connections can be accomplished using scripts outlined in Section 4.2, rather 

than relying on metaheuristics. This approach considerably enhances the speed of the optimization 

process. Subsequently, each joint will have multiple potential options, which can serve as variables 

to search for the optimal combination of connections throughout the entire structure to minimize 

both the overall cost and weight. Moreover, since the connections have already been designed, 

evaluating an individual solution—comprising the combination of all connections in the 

structure—and determining its total cost and weight becomes a straightforward mathematical 

operation executed by the computer. 
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To initiate the optimization process, the necessary shear connections at the joint are extracted from 

the Tekla model. Along with this, design information is also retrieved, including the elevation 

difference between the supporting and supported members, the skew and slope angles between 

them, as well as the framing configuration, among other relevant details. Subsequently, the initial 

optimization phase commences. At each joint necessitating a shear connection, every specified 

type of shear connection designated by the user undergoes design and optimization, adhering to 

the procedures outlined in Section 4.2. Consequently, a joint may present up to five potential shear 

connections that can be utilized. It is worth highlighting that for a building comprising 

approximately 400 connections, the entire process can be completed within five seconds. Given 

that the existing library of connections comprises only five types of shear connections, there may 

arise situations where none of these pre-defined connections can adequately satisfy the given 

design force and connection space requirements. In such instances, the joint is excluded from the 

optimization process, and a flag is raised to alert the user. This flag signifies that separate 

evaluation and consideration must be undertaken for these joints outside the scope of the 

optimization process. 

Afterwards, metaheuristics is employed for the second optimization phase. In this phase, each joint 

is treated as a variable within the search process, with each potential connection option for that 

joint considered as a distinct variable value. A solution is defined as the combination of all 

connections within the structure, and its overall cost and weight are evaluated using the cost 

function specified in Section 3.5.  

As all connections at each joint already fulfill strength and geometric requirements, there is no 

need for constraints related to these aspects during the evaluation of solutions using metaheuristics. 

However, in the case of W-shape column or girder web configurations involving bolted–bolted 

angle connections, erection issues may arise. These erection issues, referred to as double 

connections, occur during field-bolted construction when beams or girders frame opposite each 

other. Double connections pose safety concerns when they arise in the web of a column or the web 

of a beam that continuously spans over the top of a column, with all field bolts utilizing the same 

open holes. Ensuring a secure connection becomes crucial when erecting the first member, while 

simultaneously bringing the second member into its final position (AISC, 2019). As the current 

optimization tool lacks the ability to consider framing intricacies like staggered angles, clipped 
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angle connections, or temporary erection seats, which are crucial for establishing a secure 

connection while maneuvering the second member into its final position, a constraint function is 

implemented to effectively tackle this challenge. This constraint function penalizes solutions that 

involve such connection configurations, steering the optimization process away from favoring 

them. Consequently, this approach eliminates the potential issues associated with double 

connections.  

Upon completion of the optimization process, the top hundred solutions are exported to a 

spreadsheet, providing a comprehensive summary of potential solutions. This spreadsheet includes 

a concise overview of the minimal cost and minimal weight options. In addition, another sheet 

quantifies data pertaining to all the solutions, presenting information such as the total count of 

connection types employed, cumulative lengths of various angle sizes, collective area of different 

plate sizes, overall weight, weight of the connection elements, total cost, and combined weight of 

different fillet weld sizes, among other relevant metrics. Following the generation of potential 

solutions, the user can analyze the different options and select the most suitable one according to 

their needs. Upon making a decision, the user can specify their chosen option, prompting the 

optimization tool to automatically incorporate the detailed connections directly into their Tekla 

model. This streamlined process allows users to readily visualize the outputs to gain a better 

understanding of the designs.  

In the second layer of optimization, three distinct metaheuristic algorithms were utilized: NSGA-

II, SPEA2, and SMPSO, as detailed in Section 3.6. To facilitate a fair comparison of their 

effectiveness, the parameters of each algorithm were adjusted to be identical. For instance, the 

NSGA-II algorithm had a population size of 100, the SMPSO algorithm had a swarm size of 100, 

and the SPEA2 algorithm had a population size of 80 with an archive size of 20, resulting in an 

overall population of 100. Furthermore, a maximum evaluation limit of 500,000 was imposed on 

all three algorithms, which was calibrated based on the results of the case studies discussed in 

Chapter 5. Consistent parameters were also established for the corresponding crossover, mutation, 

and selection operators required by the algorithms. By maintaining uniformity in these settings, a 

consistent basis for evaluating and contrasting the performance of each algorithm was established.  

To address the optimization problem at hand, an integer encoding approach was employed. This 

encoding method was chosen as each variable represents a joint, encompassing all potential 
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connection options specific to that joint. To illustrate this, consider a 2-storey planar frame 

depicted in Figure 4-19. The red circles in the figure represent the joints where shear connections 

are required, and a total of six connections are required. Assuming that each joint can be any of 

the five potential shear connection types and have been optimized in the initial layer of 

optimization, each variable can range from 0 to 4, representing a distinct shear connection. An 

individual solution to this problem would then be represented by a string of integers, such as 

020341, which comprises the collection of all these variables. Since an integer encoding scheme 

is employed, the single-point crossover operator and bit flip mutation operator were utilized as 

they are compatible with integer encodings. Further details on these operators are provided below. 

 

Figure 4-19: 2-storey planar frame with red circles indicating where shear connections are required 

The NSGA-II and SPEA2 algorithms utilized the single-point crossover operator, which involves 

selecting a crossover point on the parent organism string and swapping all data beyond that point 

between the two parent organisms (Deb and Agrawal, 1995), as illustrated in Figure 4-20. The 

probability and distribution index for this crossover operator were both set to 0.9. Additionally, all 

three algorithms employed the bit flip mutation operator, which randomly selects one or more bits 

and flips them to introduce changes in the solution (Chicano et al., 2015), as depicted in Figure 

4-21. The distribution index for the bit flip mutation was set to 0.9, and the probability of mutation 
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was determined as 1 divided by the number of variables in the optimization problem, 

corresponding to the number of joints. For the NSGA-II and SPEA2 algorithms, a binary 

tournament selection process was employed as the selection operator. This process involves 

randomly selecting individuals from a population and passing those with the best fitness to fill the 

mating pool (Miller and Goldberg, 1995), as depicted in Figure 4-22. 

 

Figure 4-20: Single-point crossover in genetic algorithms 

 

Figure 4-21: Bit flip mutation in genetic algorithms 

 

 

Figure 4-22: Binary tournament selection in genetic algorithms 
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The chosen values for the probability and distribution index for the crossover and mutation 

operators align with the default settings provided in jMetal and have been widely used in test 

problems across various literature (Chicano et al., 2015; Deb et al., 2002; Deb and Agrawal, 

1995; Zitzler et al., 2001). Although it is important to acknowledge that optimal parameter settings 

may differ for various optimization problems (Hamdan, 2014), it is not a primary concern in the 

context of the current research problem. Given the individual preferences and diverse 

characteristics of building projects among users, it is unrealistic to seek a universally applicable 

set of optimal parameters for the optimization problem. 

The performance of these algorithms in the context of this research problem is evaluated and 

compared through case studies conducted and discussed in Chapter 5.  
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5 RESULTS AND DISCUSSION 

5.1 Introduction 
In this chapter, we examine two case studies that employed the optimization tool to evaluate its 

real-world effectiveness. The first case study involved a 2-storey steel building for a car dealership 

in Grand Prairie, Alberta, while the second case study focused on a 5-storey steel storage building. 

The steel fabricator responsible for both buildings shared the projects in the form of a Tekla model 

that included their connection designs along with the building’s corresponding structural drawings.  

As discussed before, the optimization tool is currently only capable of designing and optimizing 

shear connections. Therefore, in line with this functionality, the shear connections from both fully 

designed buildings were filtered and extracted, followed by the application of the cost function 

detailed in Section 3.5 to estimate the total material and fabrication cost of both projects based on 

the actual connections that were designed. Subsequently, the Tekla models were stripped of their 

connections, and the design loads were taken from the structural drawings. The optimization tool 

was then deployed, allowing for an examination and comparison of the resulting shear connections 

against the actual connections utilized in the project. Furthermore, a comprehensive analysis was 

conducted to compare and evaluate the overall cost implications. 

To further explore the capabilities of the optimization tool, additional tests were carried out using 

varying design loads to assess the effects of higher and lower design forces. Additionally, an 

extensive comparison was made among the NSGA-II, SPEA2, and SMPSO algorithms to identify 

the algorithm that yielded the most optimal results and assess its corresponding execution time.  

The Grand Prairie Honda and 5-Storey Affordable Storage case studies are explored in Sections 

5.2 and 5.3, respectively. In Section 5.4, the findings of these case studies are examined, providing 

an in-depth discussion on the outcome and feasibility of the optimization tool. 

5.2 Grand Prairie Honda Case Study 
The Grand Prairie Honda project is a 2-storey steel structure designed in 2021. The structure 

comprises 381 shear connections that are designed for 60% of the plastic moment capacity of the 

supported member, assuming the member is laterally braced. The unit rates specified for the steel, 

bolt, and labour costs are tabulated in Table 5-1. The unit rates used in this study were 
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recommendations provided by a local steel fabricator (Collins Steel, personal communication, 

2023) and may not represent a reliable estimate for other steel fabricators.  

Table 5-1: Material and labour unit rates utilized in the case studies 

Description Unit Rate 

Structural Steel $2.31/kg 

Bolts $2.00/bolt 

Shop Operator Cost $100/hr 

Shop Fitter Cost $100/hr 

Shop Welder Cost $150/hr 

 

To determine the overall material and fabrication cost of the structure, connections that did not fall 

under the category of shear connections were eliminated from the Tekla model. Afterwards, the 

existing shear connections were extracted and categorized based on the type of connection that 

was used and its details are summarized under the “Fabricator” column in Table 5-2. In the table, 

the number in brackets represents the total quantity of stock material required, based on a stock 

plate size of 60” x 144” and a stock angle length of 40’. To obtain the overall weight of the 

structure, information regarding the structural steel members, such as their length and profile, was 

also extracted from the Tekla model. Subsequently, using the overall weight of the structure and 

the details of the shear connections, the cost function was applied to calculate both the total 

material and fabrication cost of the entire structure, as well as the total cost specifically attributed 

to the fabrication of the shear connections. This allowed for an assessment of the cost implications 

associated with both the structure as a whole and its shear connections in isolation. 

Afterwards, the Tekla model was stripped of its existing connections, while the user settings were 

modified to ensure that the optimization process would adhere to the fabricator’s preferences in 

terms of the angle designations. To accurately assess the tool's performance in line with the 

fabricator's intentions, we opted to maintain the same angle designations and specified a no-coping 

preference. The optimization tool was then employed three times using the three metaheuristics 

discussed in Section 3.6 and 4.3: NSGA-II, SPEA2, and SMPSO. Each metaheuristic was set such 

that 500,000 total evaluations were conducted before terminating. The lowest cost option obtained 

from each metaheuristic is summarized in Table 5-2.   
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Table 5-2: Summary of lowest cost option for Grand Prairie Honda determined from the optimization tool using 
different metaheuristics 

 

Description 

Quantity 

Fabricator NSGA-II SPEA2 SMPSO 

Bolted-Bolted Single Angle 0 0 1 22 

Welded–Bolted Single Angle 123 92 102 51 

Bolted–Bolted Double Angle 21 0 1 23 

Welded–Bolted Double Angle 0 13 12 36 

Shear Tab 237 276 265 249 

Area of PL10 (m2) 8.91 (2) 7.03 (2) 6.87 (2) 5.99 (2) 

Area of PL13 (m2) 0.48 (1) 0.19 (1) 0.19 (1)  0.15 (1) 

Area of PL16 (m2) 0.84 (1) 0 0 0 

Length of L89x64x9.5 (m) 33.94 (3) 23.11 (2) 24.69 (3) 12.20 (2) 

Length of L89x89x9.5 (m) 7.52 (1) 0 0.56 (1) 20.47 (2) 

Length of L102x76x9.5 (m) 0.84 (1) 0 0 0 

Number of Bolts 1658 1158 1165 1261 

Total Weight (kg) 92,386 92,399 92,414 92,486 

Cost of Shear Connections $29,267 $27,695 $27,545 $37,664 

Material and Steel Fabrication Cost $276,459 $274,887 $274,736 $284,856 

Execution Time N/A 6m 26s 7m 9s 5m 57s 
 

Additional supplementary tests were carried out using the NSGA-II algorithm, encompassing 

various design loads and coping preferences. These parameters encompassed 60% of the plastic 

moment of the supported member with a coping preference, 50% of the plastic moment of the 

supported member with and without a coping preference, and 50% of the shear resistance of the 

supported member with and without a coping preference. These tests were conducted to assess the 

effectiveness of the tool across varying design loads and to observe how the results differ under 

different parameters. Figure 5-1 showcases the total material and steel fabrication cost associated 
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with each design load and Figure 5-2 focuses only on the cost associated with the shear 

connections. 

 

Figure 5-1: Material and steel fabrication cost for Grand Prairie Honda under various design loads using the 
optimization tool using NSGA-II algorithm 

 

Figure 5-2: Cost of shear connections for Grand Prairie Honda under various design loads using the optimization 
tool using NSGA-II algorithm 
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5.3 5-Storey Affordable Storage Case Study 
The 5-Storey Affordable Storage project is a 5-storey steel structure designed in 2022. The 

structure comprises 1415 shear connections that are designed for 60% of the plastic moment 

capacity of the supported member, assuming the member is laterally braced. The unit rates 

specified for the steel, bolt, and labour cost are tabulated in Table 5-1. Similar to the other case 

study, the unit rates used in this study were recommendations provided by a local steel fabricator 

and may not represent a reliable estimate for other steel fabricators. 

Similar to the Grand Prairie Honda case study, connections that did not fall under the category of 

shear connections were eliminated from the Tekla model. Afterwards, the existing shear 

connections were extracted and categorized based on the type of connection that was used. The 

existing connections in the Tekla model were then removed, while the user settings were modified 

to ensure that the optimization process would adhere to the fabricator’s preferences in terms of the 

angle designations. The optimization tool was then employed three times using three different 

metaheuristics: NSGA-II, SPEA2, and SMPSO. The lowest cost option obtained from each 

metaheuristic is summarized in Table 5-3. In the table, the number in brackets represents the total 

quantity of stock material required, based on a stock plate size of 60” x 144” and a stock angle 

length of 40’.  

Table 5-3: Summary of lowest cost option for 5-Storey Affordable Storage determined from the optimization tool 
using different metaheuristics 

 

Description 

Quantity 

Fabricator NSGA-II SPEA2 SMPSO 

Bolted-Bolted Single Angle 303 0 20 48 

Welded–Bolted Single Angle 0 69 86 66 

Bolted–Bolted Double Angle 188 6 30 150 

Welded–Bolted Double Angle 0 149 165 105 

Shear Tab 924 1191 1114 1046 

Area of PL10 (m2) 28.14 (6) 33.63 (7) 32.63 (7) 26.18 (5) 

Area of PL13 (m2) 15.17 (3) 0.05 (1) 0.05 (1) 0.41 (1) 
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Area of PL16 (m2) 5.97 (2) 0 0 0.96 (1) 

Area of PL19 (m2) 0 0 0 1.25 (1) 

Length of L89x64x9.5 (m) 33.94 (3) 93.13 (8) 99.26 (9) 54.94 (5) 

Length of L89x89x9.5 (m) 190.03 (16) 2.50 (1) 15.76 (2) 65.82 (6) 

Number of Bolts 9571 3692 4099 4984 

Total Weight (kg) 302,956 301,465 301,682 302,083 

Cost of Shear Connections $118,301 $111,808 $112,999 $143,562 

Material and Steel Fabrication Cost $866,931 $860,438 $861,629 $892,192 

Execution Time N/A 18m 20s 18m 59s 20m 4s 
 

Additional supplementary tests identical to the ones conducted for the Grand Prairie Honda case 

study were carried out for this case study as well to further assess the effectiveness of the tool 

across differing design loads. Figure 5-3 showcases the total material and steel fabrication cost 

associated with each design load and Figure 5-4 focuses only on the cost associated with the shear 

connections. 

 

Figure 5-3: Material and steel fabrication cost for 5-Storey Affordable Storage under various design loads using the 
optimization tool using NSGA-II algorithm 
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Figure 5-4: Cost of shear connections for 5-Storey Affordable Storage under various design loads using the 
optimization tool using NSGA-II algorithm 

5.4 Summary of Results 
In the Grand Prairie Honda case study, the optimization process exhibited consistent execution 

speed across all three metaheuristics, with an average runtime of approximately 6 minutes and 39 

seconds. Similarly, in the 5-Storey Affordable Storage case study, the optimization process also 

maintained consistent execution speed across all three metaheuristics, with an average runtime of 

approximately 19 minutes and 8 seconds. It's important to note that the actual runtime may vary 

based on the computational resources available on the machine executing the process.  

In the Grand Prairie Honda case study, the SPEA2 algorithm produced the most cost-effective 

solution, achieving a 5.9% lower material and fabrication cost of shear connections than the 

original design. Likewise, the NSGA-II algorithm yielded a cost reduction of 5.4%. In contrast, 

the SMPSO algorithm resulted in a higher cost of 28.7% compared to the original design.  

Similarly, in the 5-Storey Affordable Storage case study, the NSGA-II algorithm emerged as the 

most effective in reducing material and fabrication costs of shear connections achieving a 5.5% 

reduction in comparison to the original design. The SPEA2 algorithm also proved beneficial, 

yielding a cost reduction of 4.5%. On the other hand, the SMPSO algorithm again resulted in a 

higher cost compared to the original design resulting in an increase of 21.4%.  
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The comparable performance of the NSGA-II and SPEA2 algorithms can be attributed to their 

similar genetic algorithm framework in their optimization approach. However, the 

underperformance of the SMPSO algorithm remains unclear. It is worth noting that different 

metaheuristics may yield varying results depending on the specific optimization problem at hand, 

as discussed in relevant literature in Chapter 2. Hence, it is possible that the SMPSO algorithm is 

not well-suited for addressing this particular problem. 

The results of the optimization tool showcase that the NSGA-II and SPEA2 algorithms yield cost-

effective solutions that require significantly less material compared to the original designs. This 

reduction in material usage may be attributed to the connection designer's utilization of similar, 

albeit suboptimal, designs across various joints to enhance efficiency during the fabrication 

process. The use of standardized connections can streamline fabrication procedures by facilitating 

repetition, resulting in cost savings. However, this approach may lead to over-designed 

connections. Currently, the optimization tool does not incorporate the cost savings associated with 

repetitive connections, as quantifying them is challenging. Nevertheless, future research should 

aim to explore this aspect as a potential objective function for optimization. 

The optimization tool resulted in minimal cost savings for the overall steel fabrication for both 

buildings. The most cost-effective solution only reduced the total cost by 0.6% for the Grand 

Prairie Honda and by 0.7% for the 5-Storey Affordable Storage. This outcome can be attributed to 

several factors. First, the majority of the cost in steel fabrication is determined by the weight of 

the steel sections, which is predetermined by the engineer prior to the connection design phase. 

Consequently, the optimization tool's impact on cost, in its current state, is limited. Furthermore, 

shear connections represent a relatively small portion of the overall cost compared to other types 

of connections. Finally, due to the simplicity of shear connections, connection designers often 

achieve efficient design solutions, leading to a considerable number of connections already being 

cost-optimal.  

Although the optimization tool resulted in minimal cost savings, the primary advantage lies in its 

speed for designing and detailing connections. The tool has shown the ability to efficiently 

optimize and detail over 1400 connections in approximately 19 minutes. This significant 

acceleration in the process stands in clear contrast to the traditional approach, which often demands 

hundreds of hours from engineers and detailers. Furthermore, the optimization tool generates 
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multiple alternative options that users can directly work with or select from, adding further 

flexibility and choice to the design process. It also has the potential to reveal solutions or 

geometries that may not even have been considered by the fabricator a priori, especially when the 

tool is extended to more complex fabrication problems. 

Additional supplementary tests were also performed for both case studies that analyzed the results 

of the optimization tool under different design loads. For both case studies, the test results 

demonstrate that the cost of shear connections tends to increase with the design load, aligning with 

expectations. Notably, the Grand Prairie Honda case study revealed an approximate 20% reduction 

in shear connection costs, while the 5-Storey Affordable Storage case study demonstrated an 

impressive cost reduction of approximately 50% when utilizing 50% of the plastic moment of the 

supported member for the design load, as opposed to 50% of its shear resistance. This finding 

underscores the significant impact that the design load has on the overall cost of connections. 

Moreover, it is worth highlighting the substantial cost savings that can be achieved in fabrication 

shops equipped with a beam line capable of automating the coping process. This observation is 

evident when comparing the cost differences between the preferred and non-preferred coping 

options under similar design loads. 

In summary, the current state of the optimization tool demonstrates its capability to automate and 

optimize shear connections in building design, resulting in cost reductions compared to traditional 

design methods. While the cost reductions may not be substantial, the tool's remarkable speed in 

generating numerous design options, allowing for user adjustments or direct implementation, 

signifies its potential for significant cost savings. 

Moreover, the optimization tool presents opportunities for even greater cost savings by 

incorporating additional connection types and objective functions beyond cost and weight 

optimization. Expanding the tool's capabilities in these aspects could unlock further cost-saving 

potential. Furthermore, the findings emphasize that while optimizing connections alone can yield 

cost savings, simultaneous optimization of framing configurations and section sizes could lead to 

even greater cost reductions, necessitating further research in this area. 

The case studies also highlight the significant influence of design loads on material and fabrication 

costs for connections. This prompts the question of whether utilizing actual design loads, as 

opposed to using generic assumptions, can result in substantially lower costs for fabricators. 
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It's also important to highlight some key considerations that the case studies did not fully address. 

First, there was limited evaluation of the cost function, with only the material and fabrication costs 

of shear connections and the material and handling expenses of steel members being considered. 

Second, the studies did not incorporate additional strengthening requirements, such as the need for 

stiffeners. Finally, while the two case studies covered a wide range of joint types that required all 

five shear connection types, they did not include skewed or sloped joints, making it impossible to 

assess their impact. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  
Steel fabricators and connection designers in the steel construction industry encounter difficulties 

in accurately evaluating the efficiency and cost implications of their designs when relying on 

traditional connection design methods. The complexity of the process, involving numerous 

parameters and the need for recalculations due to project changes, leads to time-consuming and 

inefficient workflows. To overcome these challenges, this research proposed the development of 

an optimization tool that integrates emerging technologies like parametric and generative design. 

This tool aimed to automate and streamline the connection design workflow, provide instant 

feedback on cost and constructability, and promote better integration across disciplines. By 

leveraging this tool, steel fabricators and connection designers can achieve greater efficiency and 

productivity in their design processes.  

The optimization tool, built using Grasshopper3D and C# programming, utilizes user preferences 

and their corresponding Tekla model to design, optimize, and detail steel connections. The core 

objective of the tool is to achieve cost and weight minimization for buildings by employing a cost 

function that quantifies material and fabrication expenses associated with steel connections. The 

tool generates a wide array of potential design options for the user, providing them with the 

flexibility to either make direct selections or explore a diverse range of alternatives through the 

use of metaheuristics and generative design.  

To assess the tool's effectiveness against real-world designs, two case studies were conducted on 

a 2-storey and a 5-storey steel building using the optimization tool. These studies served to evaluate 

the tool's performance and its ability to meet the requirements and standards of actual design 

scenarios. The case studies showcased the tool’s potential to generate connection designs that 

yielded lower costs compared to conventional methods. The tool’s standout advantage lies in its 

exceptional speed, enabling swift design, optimization, and detailing of connections. It produced 

one hundred potential design options for two buildings featuring 381 and 1415 shear connections, 

accomplishing this task in 6 and 19 minutes, respectively. In contrast, completing this task would 

typically require hundreds of engineering and detailing hours.   
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While the current optimization tool shows promise, it does have limitations primarily stemming 

from the time constraints of the research project. Specifically, only five types of shear connections 

have been implemented and investigated, while other types of connections are not currently 

compatible. Furthermore, additional strengthening elements like doubler plates or stiffeners are 

not considered in the tool. The existing cost function only accounts for material and fabrication 

costs of the five implemented shear connections, necessitating expansion if more connections are 

added in the future. Additionally, cost implications associated with certain erection constraints are 

not factored into the tool. Lastly, the current objective functions used for optimization do not fully 

capture a truly optimized design, as fabrication and erection considerations like the use of 

repetitive designs are not accounted for in the tool. 

6.2 Recommendations for Future Research 
With the recent utilization of emerging technologies in the steel construction industry, this research 

holds significant potential for future research projects to be pursued. Notably, the integration of 

additional connection design modules, such as moment and bracing connections, along with other 

forms of connections inherent in typical building structures, could result in enhanced optimization 

by considering the entirety of the structure. Further exploration is necessary to develop a more 

sophisticated cost function capable of accurately estimating the material, fabrication, and erection 

costs of the structure, taking into account real-time data. Additionally, it is essential to investigate 

alternative objective functions that can more effectively minimize the overall cost of the structure.  

The outcomes of the case studies revealed that optimizing connections alone does not have a 

substantial impact on the overall cost of the structure. Consequently, there is a need for further 

research to expand the optimization tool's scope, encompassing the optimization of framing layout 

and steel sections as well. This extension would significantly enhance the tool's effectiveness and 

efficiency in steel building design. Moreover, incorporating actual design loads instead of relying 

on generalized statements like using 50% of the supported members shear capacity, would yield 

additional cost savings and further streamline the design process, fostering increased efficiency in 

steel building design practices.  
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Figure A-1: SE isometric view of Grand Prairie Honda structure 

 

 

 

Figure A-2: NW isometric view of Grand Prairie Honda structure 
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Appendix B – Isometric views of 5-Storey 

Affordable Storage Structure 
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Figure B-1: SW isometric view of 5-Storey Affordable Storage structure

Figure B-2: NE isometric view of 5-Storey Affordable Storage structure 
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